naltrindole-5--isothiocyanate has been researched along with deltorphin* in 2 studies
2 other study(ies) available for naltrindole-5--isothiocyanate and deltorphin
Article | Year |
---|---|
Antagonism of delta(2)-opioid receptors by naltrindole-5'-isothiocyanate attenuates heroin self-administration but not antinociception in rats.
delta-Opioid receptors have been implicated in reinforcement processes and antagonists are available that produce long-lasting and selective antagonism of delta-opioid receptors in vivo. This experiment assessed the contribution of delta-opioid receptors to the antinociceptive and reinforcing properties of heroin. The effects of the irreversible delta-antagonist naltrindole-5'-isothiocyanate (5'-NTII) were evaluated on heroin self-administration and hot-plate antinociception in rats. 5'-NTII (10 nmol i.c.v.) shifted the dose-response curve for heroin self-administration downward, increasing the A(50) values on the ascending and descending limbs by approximately 0.5 log units and decreasing the maximum by 33%. 5'-NTII (40 nmol i.c.v.) shifted both limbs of the heroin self-administration dose-effect curve 1.2 log units to the right and decreased the maximum by 90%. Heroin self-administration gradually returned to baseline levels over 7 or 17 days after administration of 10 or 40 nmol 5'-NTII, respectively. 5'-NTII (40 nmol i.c.v.) decreased the self-administration of 0.17 mg/infusion cocaine by 40% while having no effect on responding maintained by 0.33 or 0.67 mg/infusion. 5'-NTII attenuated the antinociceptive effects of deltorphin (delta(2)) in a dose-dependent manner while having no effect on antinociception elicited after i.c. v. administration of [D-Pen(2),D-Pen(5)]-enkephalin (delta(1)) or [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (mu). In addition, the antinociceptive effects of heroin were not significantly affected by 5'-NTII (40 nmol i.c.v.). Therefore, 5'-NTII can attenuate the reinforcing effects of heroin at doses that do not affect its antinociceptive effects. Long-acting delta(2)-opioid antagonists may be beneficial in the treatment of heroin dependence or as adjuncts to reduce the abuse liability of opioid analgesics. Topics: Analgesics, Opioid; Animals; Cocaine; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Heroin; Injections, Intraventricular; Isothiocyanates; Male; Naltrexone; Narcotic Antagonists; Oligopeptides; Pain Measurement; Rats; Rats, Inbred F344; Receptors, Opioid, delta; Reinforcement, Psychology; Self Administration | 2000 |
Evidence for a single functional opioid delta receptor subtype in the mouse isolated vas deferens.
The identification of opioid delta receptor subtypes in mouse brain led to the investigation of the nature of the opioid delta receptors in the mouse isolated vas deferens in vitro. Noncumulative concentration-effect curves were constructed for DPDPE (delta 1 agonist) and [D-Ala2, Glu4]deltorphin (delta 2 agonist) in control tissues, or in tissues which had been incubated with either [D-Ala2, Leu5, Cys6] enkephalin (DALCE) (noncompetitive delta 1 antagonist) or 5'-naltrindole isothiocyanate (5'-NTII) (noncompetitive delta 2 antagonist). Incubation of the tissues with DALCE, under either oxygenated or nonoxygenated conditions, did not alter the concentration-effect curves for either agonist. In contrast, incubation of the tissues with 5'-NTII resulted in a significant rightward displacement of the concentration-effect curves of both DPDPE and [D-Ala2, Glu4] deltorphin. Additionally, naltriben, a selective and competitive delta 2 antagonist, showed no significant difference in its ability to antagonize a fixed, submaximal concentration of either DPDPE or [D-Ala2, Glu4]deltorphin. Furthermore, there was no significant difference in the affinity of naloxone (i.e., pA2) at the receptor(s) acted upon by either DPDPE or [D-Ala2, Glu4]deltorphin. Tolerance to DPDPE or [D-Ala2, Glu4]deltorphin was produced by incubation of the tissues with these agonists; construction of the [D-Ala2, Glu4]deltorphin concentration-effect curve in DPDPE-tolerant tissues demonstrated cross-tolerance between these agonists and, conversely, construction of DPDPE concentration-effect curves in [D-Ala2, Glu4]deltorphin-tolerant tissues revealed cross-tolerance between these agonists.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Animals; Benzylidene Compounds; Drug Tolerance; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine-2-Alanine; Enkephalins; In Vitro Techniques; Isothiocyanates; Male; Mice; Mice, Inbred ICR; Morphinans; Naltrexone; Oligopeptides; Receptors, Opioid, delta; Thiocyanates; Vas Deferens | 1993 |