naltrexone and cyprodime

naltrexone has been researched along with cyprodime in 28 studies

Research

Studies (28)

TimeframeStudies, this research(%)All Research%
pre-19901 (3.57)18.7374
1990's8 (28.57)18.2507
2000's6 (21.43)29.6817
2010's11 (39.29)24.3611
2020's2 (7.14)2.80

Authors

AuthorsStudies
Burkard, WP; Eggstein-Aeppli, L; Schmidhammer, H; Smith, CF1
Aschenbach, LC; Cassidy, MP; Chen, J; Dewey, WL; Gabra, BH; Li, G; Selley, DE; Stevens, DL; Westkaemper, RB; Zhang, Y1
Aschenbach, LC; He, H; Li, G; Selley, DE; Zhang, Y1
Beletskaya, IO; Elbegdorj, O; Selley, DE; Yuan, Y; Zhang, Y1
Arnatt, CK; He, H; Kellogg, GE; Mosier, PD; Selley, DE; Zaidi, SA; Zhang, Y1
Aschenbach, LC; Dewey, WL; Elbegdorj, O; Li, G; Scoggins, KL; Selley, DE; Stevens, DL; Yuan, Y; Zaidi, SA; Zhang, Y1
Jackson, HC; Nutt, DJ1
Cosentino, M; De Ponti, F; Frigo, G; Giaroni, C; Lecchini, S; Leoni, O; Marino, F; Somaini, L1
Spanagel, R1
Chen, SF; Ghanta, VK; Hiramoto, RN; Hsueh, CM; Huang, HJ1
Józefowski, S; Płytycz, B1
Hata, F; Nishio, H; Nishiwaki, H; Saitoh, N; Takeuchi, T1
Amico, MC; Mattioli, F; Morrone, LA; Romanelli, L; Valeri, P1
Borsodi, A; Garzon, J; Hutcheson, DM; Maldonado, R; Rodriguez-Diaz, M; Roques, BP; Sánchez-Blazquez, P; Schmidhammer, H1
Brotchie, JM; Crossman, AR; Fox, SH; Henry, B1
Dannals, RF; Mathews, WB; Musachio, JL; Ravert, HT; Scheffel, U1
Aimi, N; Horie, S; Ishikawa, H; Matsumoto, K; Murayama, T; Ponglux, D; Takayama, H; Watanabe, K1
Baamonde, A; García, V; Hidalgo, A; Juárez, L; Lastra, A; Menéndez, L1
Assreuy, AM; Benevides, RG; Cavada, BS; Celedônio, NR; Coelho-de-Souza, AN; de Freitas Pires, A; Leal-Cardoso, JH; Lopes, ÉA; Nagano, CS; Rodrigues, NV; Santos, CF; Soares, CE; Sousa, PL1
Dong, S; Li, M; Ma, G; Zhou, L1
Cao, S; Dong, S; Li, M; Ma, G; Zhou, L1
de Groat, WC; Ferroni, MC; Kadow, BT; Kang, A; Lyon, TD; Roppolo, JR; Shen, B; Slater, RC; Tai, C; Wang, J; Xiao, Z; Zhang, Z1
Higashi, Y; Nakamura, K; Saito, M; Shimizu, S; Shimizu, T; Taniuchi, K; Ueba, T; Yawata, T1
Browne, CA; Erickson, RL; Lucki, I; Robinson, SA1
Jastrzebska, K; Przewlocki, R; Rodriguez Parkitna, J; Sikora, M; Skupio, U1
Heller, NM; Maher, DP; Walia, D1
D'Ângelo, MQ; Ferreira, AJ; Maltos, KLM; Pacheco, CMDF; Queiroz-Junior, CM; Soares, RV1
Baamonde, A; González-Rodríguez, S; Lastra, A; Machelska, H; Menéndez, L; Seitz, V; Stein, C1

Other Studies

28 other study(ies) available for naltrexone and cyprodime

ArticleYear
Synthesis and biological evaluation of 14-alkoxymorphinans. 2. (-)-N-(cyclopropylmethyl)-4,14-dimethoxymorphinan-6-one, a selective mu opioid receptor antagonist.
    Journal of medicinal chemistry, 1989, Volume: 32, Issue:2

    Topics: Animals; Guinea Pigs; In Vitro Techniques; Male; Mice; Morphinans; Narcotic Antagonists; Rats; Receptors, Opioid; Receptors, Opioid, mu

1989
Design, synthesis, and biological evaluation of 6alpha- and 6beta-N-heterocyclic substituted naltrexamine derivatives as mu opioid receptor selective antagonists.
    Journal of medicinal chemistry, 2009, Mar-12, Volume: 52, Issue:5

    Topics: Amino Acid Sequence; Analgesics; Analgesics, Opioid; Animals; Binding Sites; Binding, Competitive; CHO Cells; Cricetinae; Cricetulus; Drug Design; Ligands; Models, Molecular; Molecular Sequence Data; Morphinans; Morphine; Naltrexone; Radioligand Assay; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Sequence Alignment; Structure-Activity Relationship

2009
14-O-Heterocyclic-substituted naltrexone derivatives as non-peptide mu opioid receptor selective antagonists: design, synthesis, and biological studies.
    Bioorganic & medicinal chemistry letters, 2009, Mar-15, Volume: 19, Issue:6

    Topics: Binding, Competitive; Chemistry, Pharmaceutical; Drug Design; Humans; Kinetics; Ligands; Molecular Conformation; Molecular Structure; Naltrexone; Narcotic Antagonists; Nitrogen; Peptides; Protein Structure, Tertiary; Receptors, Opioid, mu

2009
Opioid receptor selectivity profile change via isosterism for 14-O-substituted naltrexone derivatives.
    Bioorganic & medicinal chemistry letters, 2013, Jul-01, Volume: 23, Issue:13

    Topics: Molecular Conformation; Naltrexone; Narcotic Antagonists; Stereoisomerism; Structure-Activity Relationship

2013
Binding mode characterization of 6α- and 6β-N-heterocyclic substituted naltrexamine derivatives via docking in opioid receptor crystal structures and site-directed mutagenesis studies: application of the 'message-address' concept in development of mu opio
    Bioorganic & medicinal chemistry, 2013, Nov-01, Volume: 21, Issue:21

    Topics: Amino Acid Sequence; Animals; Binding Sites; Cattle; Humans; Molecular Docking Simulation; Molecular Sequence Data; Mutagenesis, Site-Directed; Naltrexone; Protein Binding; Protein Structure, Tertiary; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Recombinant Proteins; Sequence Alignment

2013
Design, synthesis, and biological evaluation of 14-heteroaromatic-substituted naltrexone derivatives: pharmacological profile switch from mu opioid receptor selectivity to mu/kappa opioid receptor dual selectivity.
    Journal of medicinal chemistry, 2013, Nov-27, Volume: 56, Issue:22

    Topics: Animals; Behavior, Animal; Chemistry Techniques, Synthetic; CHO Cells; Cricetinae; Cricetulus; Drug Design; Male; Mice; Models, Molecular; Naltrexone; Protein Conformation; Receptors, Opioid, kappa; Receptors, Opioid, mu; Substrate Specificity

2013
Differential effects of selective mu-, kappa- and delta-opioid antagonists on electroshock seizure threshold in mice.
    Psychopharmacology, 1991, Volume: 103, Issue:3

    Topics: Animals; Anticonvulsants; Bicuculline; Dose-Response Relationship, Drug; Electroshock; gamma-Aminobutyric Acid; Indoles; Male; Mice; Mice, Inbred Strains; Morphinans; Naloxone; Naltrexone; Narcotic Antagonists; Phenytoin; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu

1991
Tonic modulation of neurotransmitter release in the guinea-pig myenteric plexus: effect of mu and kappa opioid receptor blockade and of chronic sympathetic denervation.
    Neuroscience letters, 1995, Jul-21, Volume: 194, Issue:3

    Topics: Acetylcholine; Animals; Colon; Dose-Response Relationship, Drug; Guinea Pigs; Morphinans; Myenteric Plexus; Naltrexone; Narcotic Antagonists; Neurotransmitter Agents; Norepinephrine; Receptors, Opioid, kappa; Receptors, Opioid, mu; Sympathetic Nervous System

1995
The influence of opioid antagonists on the discriminative stimulus effects of ethanol.
    Pharmacology, biochemistry, and behavior, 1996, Volume: 54, Issue:4

    Topics: Animals; Discrimination, Psychological; Dose-Response Relationship, Drug; Ethanol; Male; Morphinans; Naloxone; Naltrexone; Narcotic Antagonists; Rats; Rats, Wistar

1996
Activation of mu-opioid receptors are required for the conditioned enhancement of NK cell activity.
    Brain research, 1996, Oct-21, Volume: 737, Issue:1-2

    Topics: Animals; beta-Endorphin; Enkephalin, Leucine; Enkephalin, Methionine; Injections, Spinal; Killer Cells, Natural; Mice; Mice, Inbred BALB C; Morphinans; Naltrexone; Narcotic Antagonists; Receptors, Opioid, mu

1996
Characterization of opiate binding sites on the goldfish (Carassius auratus L.) pronephric leukocytes.
    Polish journal of pharmacology, 1997, Volume: 49, Issue:4

    Topics: Animals; Binding Sites; Goldfish; Leukocytes; Morphinans; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Receptors, Opioid, delta; Receptors, Opioid, mu

1997
Relationship between inhibitory effect of endogenous opioid via mu-receptors and muscarinic autoinhibition in acetylcholine release from myenteric plexus of guinea pig ileum.
    Japanese journal of pharmacology, 1998, Volume: 77, Issue:4

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Acetylcholine; Analgesics, Non-Narcotic; Analgesics, Opioid; Animals; Atropine; Electric Stimulation; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Guinea Pigs; Ileum; In Vitro Techniques; Male; Morphinans; Muscarine; Muscarinic Agonists; Muscarinic Antagonists; Muscle, Smooth; Myenteric Plexus; Naltrexone; Narcotic Antagonists; Opioid Peptides; Receptors, Muscarinic; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu

1998
Interactions between cholecystokinin and opioids in the isolated guinea-pig ileum.
    British journal of pharmacology, 1999, Volume: 127, Issue:4

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Guinea Pigs; Ileum; In Vitro Techniques; Male; Morphinans; Muscle Contraction; Naloxone; Naltrexone; Oligopeptides; Opioid Peptides; Receptor, Cholecystokinin A; Receptor, Cholecystokinin B; Receptors, Cholecystokinin; Receptors, Opioid; Sincalide; Substance Withdrawal Syndrome

1999
Use of selective antagonists and antisense oligonucleotides to evaluate the mechanisms of BUBU antinociception.
    European journal of pharmacology, 1999, Oct-21, Volume: 383, Issue:1

    Topics: Analgesics; Animals; Male; Mice; Morphinans; Naltrexone; Narcotic Antagonists; Oligonucleotides, Antisense; Oligopeptides; Pain Measurement; Receptors, Opioid, delta; Receptors, Opioid, mu

1999
Mu- and delta-opioid receptor antagonists reduce levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson's disease.
    Experimental neurology, 2001, Volume: 171, Issue:1

    Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Animals; Callithrix; Disease Models, Animal; Drug Therapy, Combination; Dyskinesias; Female; Hypokinesia; Levodopa; Male; Morphinans; Motor Activity; Naltrexone; Narcotic Antagonists; Parkinsonian Disorders; Posture; Receptors, Opioid, delta; Receptors, Opioid, mu

2001
[(11)C]-GR89696, a potent kappa opiate receptor radioligand; in vivo binding of the R and S enantiomers.
    Nuclear medicine and biology, 2002, Volume: 29, Issue:1

    Topics: Adrenergic alpha-Agonists; Animals; Brain; Mice; Morphinans; Naltrexone; Narcotic Antagonists; Piperazines; Pyrrolidines; Receptors, Opioid, kappa; Stereoisomerism; Tissue Distribution

2002
Antinociception, tolerance and withdrawal symptoms induced by 7-hydroxymitragynine, an alkaloid from the Thai medicinal herb Mitragyna speciosa.
    Life sciences, 2005, Nov-19, Volume: 78, Issue:1

    Topics: Analgesics; Analgesics, Opioid; Animals; Dose-Response Relationship, Drug; Drug Tolerance; Injections, Subcutaneous; Male; Mice; Mitragyna; Models, Molecular; Morphinans; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Pain Measurement; Reaction Time; Secologanin Tryptamine Alkaloids; Substance Withdrawal Syndrome; Thailand

2005
Effects of the local administration of selective mu-, delta-and kappa-opioid receptor agonists on osteosarcoma-induced hyperalgesia.
    Naunyn-Schmiedeberg's archives of pharmacology, 2005, Volume: 372, Issue:3

    Topics: Analgesics, Opioid; Animals; Bone Neoplasms; Drug Interactions; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Hyperalgesia; Mice; Morphinans; Naltrexone; Narcotic Antagonists; Osteosarcoma; Receptors, Opioid

2005
Opioid-like antinociceptive effects of oral administration of a lectin purified from the seeds of Canavalia brasiliensis.
    Fundamental & clinical pharmacology, 2013, Volume: 27, Issue:2

    Topics: Administration, Oral; Analgesics; Analgesics, Opioid; Animals; Canavalia; Mice; Morphinans; Naloxone; Naltrexone; Nociception; Pain Measurement; Plant Lectins; Receptors, Opioid, delta; Receptors, Opioid, kappa; Seeds

2013
Analgesic properties of chimeric peptide based on morphiceptin and PFRTic-amide.
    Regulatory peptides, 2012, Nov-10, Volume: 179, Issue:1-3

    Topics: Analgesia; Analgesics, Opioid; Animals; Arginine; Dose-Response Relationship, Drug; Endorphins; Guinea Pigs; Male; Mice; Morphinans; Naloxone; Naltrexone; Neuropeptides; Opioid Peptides; Proline; Receptors, Neuropeptide; Tetrahydroisoquinolines; Time Factors

2012
The cardiovascular effects of a chimeric opioid peptide based on morphiceptin and PFRTic-NH2.
    Peptides, 2013, Volume: 39

    Topics: Analgesics, Opioid; Animals; Blood Pressure; Bradycardia; Endorphins; Heart Rate; Hypotension; Injections, Intravenous; Injections, Intraventricular; Male; Morphinans; Naloxone; Naltrexone; Narcotic Antagonists; NG-Nitroarginine Methyl Ester; Rats; Rats, Wistar

2013
Role of µ, κ, and δ opioid receptors in tibial inhibition of bladder overactivity in cats.
    The Journal of pharmacology and experimental therapeutics, 2015, Volume: 355, Issue:2

    Topics: Acetic Acid; Animals; Cats; Female; Male; Morphinans; Naloxone; Naltrexone; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Tibial Nerve; Transcutaneous Electric Nerve Stimulation; Urinary Bladder, Overactive

2015
Brain opioid and nociceptin receptors are involved in regulation of bombesin-induced activation of central sympatho-adrenomedullary outflow in the rat.
    Molecular and cellular biochemistry, 2016, Volume: 411, Issue:1-2

    Topics: Adrenal Medulla; Animals; Bombesin; Brain; Catecholamines; Morphinans; Naloxone; Naltrexone; Nociceptin Receptor; Rats; Receptors, Opioid; Sympathetic Nervous System

2016
A role for the mu opioid receptor in the antidepressant effects of buprenorphine.
    Behavioural brain research, 2017, 02-15, Volume: 319

    Topics: Animals; Antidepressive Agents; Behavior, Animal; Buprenorphine; Feeding and Eating Disorders; Feeding Behavior; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Morphinans; Naltrexone; Narcotic Antagonists; Pain Measurement; Reaction Time; Receptors, Opioid, kappa; Receptors, Opioid, mu

2017
Antagonism of μ-opioid receptors reduces sensation seeking-like behavior in mice.
    Behavioural brain research, 2019, 02-01, Volume: 359

    Topics: Animals; Appetitive Behavior; Brain; Conditioning, Operant; Dose-Response Relationship, Drug; Exploratory Behavior; Male; Mice, Inbred C57BL; Morphinans; Motivation; Motor Activity; Naltrexone; Narcotic Antagonists; Random Allocation; Receptors, Opioid; Receptors, Opioid, mu; Reward

2019
Suppression of Human Natural Killer Cells by Different Classes of Opioids.
    Anesthesia and analgesia, 2019, Volume: 128, Issue:5

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Opioid; Anesthesia; Buprenorphine; Enkephalin, D-Penicillamine (2,5)-; Fentanyl; Fluoresceins; Humans; Immunosuppression Therapy; K562 Cells; Killer Cells, Natural; Loperamide; Methadone; Morphinans; Morphine; Naloxone; Naltrexone; Succinimides; Toll-Like Receptor 4; Tramadol

2019
The blockade of kappa opioid receptors exacerbates alveolar bone resorption in rats.
    Archives of oral biology, 2020, Volume: 120

    Topics: Alveolar Bone Loss; Animals; Bone Resorption; Cytokines; Disease Models, Animal; Male; Morphinans; Naltrexone; Narcotic Antagonists; Osteoblasts; Osteoclasts; Periodontitis; Rats; Rats, Wistar; Receptors, Opioid

2020
A low pKa ligand inhibits cancer-associated pain in mice by activating peripheral mu-opioid receptors.
    Scientific reports, 2020, 10-29, Volume: 10, Issue:1

    Topics: Analgesics, Opioid; Animals; Bone Neoplasms; Cancer Pain; Cell Line, Tumor; Fentanyl; Hydrogen-Ion Concentration; Hyperalgesia; Ligands; Male; Melanoma, Experimental; Mice; Mice, Inbred C3H; Mice, Inbred C57BL; Morphinans; Naloxone; Naltrexone; Narcotic Antagonists; Piperidines; Receptors, Opioid, mu

2020