naloxone has been researched along with rimcazole* in 2 studies
2 other study(ies) available for naloxone and rimcazole
Article | Year |
---|---|
The antitussive activity of delta-opioid receptor stimulation in guinea pigs.
In this study, the activity of the delta-opioid receptor subtype-selective agonist, SB 227122, was investigated in a guinea pig model of citric acid-induced cough. Parenteral administration of selective agonists of the delta-opioid receptor (SB 227122), mu-opioid receptor (codeine and hydrocodone), and kappa-opioid receptor (BRL 52974) produced dose-related inhibition of citric acid-induced cough with ED(50) values of 7.3, 5.2, 5.1, and 5.3 mg/kg, respectively. The nonselective opioid receptor antagonist, naloxone (3 mg/kg, i.m.), attenuated the antitussive effects of codeine or SB 227122, indicating that the antitussive activity of both compounds is opioid receptor-mediated. The delta-receptor antagonist, SB 244525 (10 mg/kg, i.p.), inhibited the antitussive effect of SB 227122 (20 mg/kg, i.p.). In contrast, combined pretreatment with beta-funaltrexamine (mu-receptor antagonist; 20 mg/kg, s.c.) and norbinaltorphimine (kappa-receptor antagonist; 20 mg/kg, s.c.), at doses that inhibited the antitussive activity of mu- and kappa-receptor agonists, respectively, was without effect on the antitussive response of SB 227122 (20 mg/kg, i.p.). The sigma-receptor antagonist rimcazole (3 mg/kg, i.p.) inhibited the antitussive effect of dextromethorphan (30 mg/kg, i.p.), a sigma-receptor agonist, but not that of SB 227122. These studies provide compelling evidence that the antitussive effects of SB 227122 in this guinea pig cough model are mediated by agonist activity at the delta-opioid receptor. Topics: Animals; Carbazoles; Cell Line; CHO Cells; Cloning, Organism; Codeine; Cough; Cricetinae; Dextromethorphan; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Guinea Pigs; Humans; Hydrocodone; Levallorphan; Male; Naloxone; Narcotic Antagonists; Protein Binding; Pyridines; Pyrroles; Pyrrolidines; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu | 2000 |
Characterization of phencyclidine-induced effects on neuropeptide Y systems in the rat caudate-putamen.
Multiple administrations of the psychotomimetic drug, phencyclidine-HCI (PCP), decreased striatal neuropeptide Y-like immunoreactivity (NPY-LI) levels in a dose-dependent manner. Single or multiple PCP administrations decreased striatal NPY levels after 10-12 h; levels returned to control 24 h after a single dose or 58 h after multiple doses. In contrast, no significant changes were seen in nigral NPY levels with either acute or multiple-dose PCP treatments. The role of monoamine, sigma or opioid receptors in PCP-induced striatal NPY changes was evaluated. When administered alone, the alpha 1-adrenergic antagonist, prazosin, the sigma antagonist, BMY 14802, and the dopamine D2 antagonist, sulpiride decreased striatal NPY levels; however, only prazosin and the dopamine D1 antagonist, SCH 23390, significantly attenuated PCP-induced changes. Administration of the gamma-aminobutyric acid transaminase (GABA-T) inhibitors, amino-oxyacetic acid (AOAA) or gamma-vinyl-GABA (GVG, vigabatrin, MDL 71,754) alone had no effect on striatal NPY-LI levels while administration of these indirect GABA agonists prior to or concurrently with PCP treatment completely blocked PCP-induced changes in striatal NPY-LI levels. The effect of the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801, on striatal NPY-LI content resembled that of PCP and was also blocked by the two indirect GABA agonists. These data suggest that NPY systems are modulated by glutamatergic activity (specifically by the NMDA receptor) and that the interaction between these two transmitter systems is mediated by GABAergic mechanisms. Topics: 4-Aminobutyrate Transaminase; Adrenergic beta-Antagonists; Aminocaproates; Aminooxyacetic Acid; Animals; Benzazepines; Carbazoles; Corpus Striatum; Dioxanes; Dizocilpine Maleate; Dose-Response Relationship, Drug; Drug Administration Schedule; Idazoxan; Male; Naloxone; Neuropeptide Y; Phencyclidine; Prazosin; Psychotropic Drugs; Putamen; Pyrimidines; Radioimmunoassay; Rats; Rats, Sprague-Dawley; Receptors, Opioid, mu; Time Factors; Vigabatrin | 1992 |