nafcillin has been researched along with imipenem, anhydrous in 11 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 3 (27.27) | 18.7374 |
1990's | 3 (27.27) | 18.2507 |
2000's | 1 (9.09) | 29.6817 |
2010's | 4 (36.36) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Lombardo, F; Obach, RS; Waters, NJ | 1 |
Anderson, KC; Kellogg, GE; Sarkar, A | 1 |
Chambers, HF; Kennedy, S; Sachdeva, M | 1 |
Fernandez-Guerrero, M; Henry, N; Rouse, M; Wilson, W | 1 |
Archer, GL; Berry, AJ; Johnston, JL | 1 |
Chambers, HF; Hackbarth, C; Sachdeva, M; Stella, FB | 1 |
Palmer, SM; Rybak, MJ | 1 |
Archer, GL; Climo, MW; Hale-Cooper, CG; Markowitz, SM; Williams, DS | 1 |
Chanda, PK; Mehta, S; Paul, A; Plata, KB; Riosa, S; Rosato, AE; Rosato, RR; Singh, C | 1 |
Gandhi, RG; Leonard, SN; Patel, MD; Supple, ME | 1 |
Berti, AD; Nizet, V; Nonejuie, P; Olson, J; Pogliano, J; Proctor, RA; Rose, WE; Sakoulas, G; Sauer, JD; Theisen, E | 1 |
11 other study(ies) available for nafcillin and imipenem, anhydrous
Article | Year |
---|---|
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding | 2008 |
Computational analysis of structure-based interactions and ligand properties can predict efflux effects on antibiotics.
Topics: Anti-Bacterial Agents; beta-Lactams; Computational Biology; Drug Resistance, Bacterial; Hydrophobic and Hydrophilic Interactions; Ligands; Membrane Transport Proteins; Microbial Sensitivity Tests; Models, Molecular; Protein Binding; Protein Conformation; Quantitative Structure-Activity Relationship; Regression Analysis; Thermodynamics | 2012 |
Binding affinity for penicillin-binding protein 2a correlates with in vivo activity of beta-lactam antibiotics against methicillin-resistant Staphylococcus aureus.
Topics: Acyltransferases; Ampicillin; Animals; Anti-Bacterial Agents; Bacterial Proteins; Carrier Proteins; Disease Models, Animal; Endocarditis, Bacterial; Hexosyltransferases; Imipenem; Methicillin; Multienzyme Complexes; Muramoylpentapeptide Carboxypeptidase; Nafcillin; Penicillin Resistance; Penicillin-Binding Proteins; Peptidyl Transferases; Rabbits; Staphylococcal Infections; Staphylococcus aureus; Ticarcillin | 1990 |
Ciprofloxacin therapy of experimental endocarditis caused by methicillin-susceptible or methicillin-resistant Staphylococcus aureus.
Topics: Animals; Ciprofloxacin; Drug Therapy, Combination; Endocarditis, Bacterial; Gentamicins; Humans; Imipenem; Methicillin; Nafcillin; Penicillin Resistance; Rabbits; Staphylococcal Infections; Staphylococcus aureus; Thienamycins; Vancomycin | 1988 |
Imipenem therapy of experimental Staphylococcus epidermidis endocarditis.
Topics: Animals; Endocarditis, Bacterial; Humans; Imipenem; Methicillin; Microbial Sensitivity Tests; Nafcillin; Rabbits; Staphylococcal Infections; Staphylococcus epidermidis; Thienamycins; Vancomycin | 1986 |
Comparative activity of CGP 31608, nafcillin, cefamandole, imipenem, and vancomycin against methicillin-susceptible and methicillin-resistant staphylococci.
Topics: Anti-Bacterial Agents; Cefamandole; Imipenem; Lactams; Methicillin; Microbial Sensitivity Tests; Nafcillin; Penicillin Resistance; Staphylococcus; Thienamycins; Vancomycin | 1987 |
An evaluation of the bactericidal activity of ampicillin/sulbactam, piperacillin/tazobactam, imipenem or nafcillin alone and in combination with vancomycin against methicillin-resistant Staphylococcus aureus (MRSA) in time-kill curves with infected fibrin
Topics: Ampicillin; Anti-Bacterial Agents; Drug Synergism; Drug Therapy, Combination; Fibrin; Imipenem; Methicillin Resistance; Microbial Sensitivity Tests; Nafcillin; Penicillanic Acid; Penicillins; Piperacillin; Staphylococcus aureus; Sulbactam; Tazobactam; Vancomycin | 1997 |
Comparison of the in-vitro and in-vivo efficacy of FK037, vancomycin, imipenem and nafcillin against staphylococcal species.
Topics: Animals; Bacteriological Techniques; beta-Lactam Resistance; Ceftizoxime; Drug Resistance, Microbial; Endocarditis; Imipenem; Methicillin Resistance; Microbial Sensitivity Tests; Nafcillin; Rabbits; Staphylococcal Infections; Staphylococcus; Staphylococcus aureus; Vancomycin | 1997 |
β-Lactams increase the antibacterial activity of daptomycin against clinical methicillin-resistant Staphylococcus aureus strains and prevent selection of daptomycin-resistant derivatives.
Topics: Amoxicillin-Potassium Clavulanate Combination; Animals; Anti-Bacterial Agents; beta-Lactams; Cefotaxime; Daptomycin; DNA; Drug Resistance, Bacterial; Drug Synergism; Imipenem; Insecta; Larva; Methicillin-Resistant Staphylococcus aureus; Microbial Sensitivity Tests; Mutation; Nafcillin; Oxacillin; Staphylococcal Infections | 2012 |
Comparative activities of telavancin combined with nafcillin, imipenem, and gentamicin against Staphylococcus aureus.
Topics: Aminoglycosides; Anti-Bacterial Agents; Drug Synergism; Drug Therapy, Combination; Gentamicins; Humans; Imipenem; Lipoglycopeptides; Methicillin-Resistant Staphylococcus aureus; Microbial Sensitivity Tests; Models, Biological; Nafcillin; Staphylococcal Infections; Staphylococcus aureus; Vancomycin Resistance | 2013 |
Penicillin Binding Protein 1 Is Important in the Compensatory Response of Staphylococcus aureus to Daptomycin-Induced Membrane Damage and Is a Potential Target for β-Lactam-Daptomycin Synergy.
Topics: Anti-Bacterial Agents; Cefaclor; Cefotaxime; Cefoxitin; Ceftriaxone; Cell Membrane; Daptomycin; Drug Synergism; Drug Therapy, Combination; Gene Expression Regulation, Bacterial; Imipenem; Meropenem; Methicillin-Resistant Staphylococcus aureus; Models, Statistical; Nafcillin; Penicillin-Binding Proteins; Promoter Regions, Genetic; Protein Isoforms; Thienamycins; Transcription, Genetic | 2016 |