nafcillin has been researched along with cefoxitin in 8 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (37.50) | 29.6817 |
2010's | 5 (62.50) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL | 1 |
Lombardo, F; Obach, RS; Waters, NJ | 1 |
Cheung, A; Filipe, SR; Fu, Z; Memmi, G; Pinho, MG | 1 |
Banerjee, R; Basuino, L; Chambers, HF; Gretes, M; Harlem, C | 1 |
Anderson, KC; Kellogg, GE; Sarkar, A | 1 |
Bommareddy, A; Gionfriddo, MR; Heindel, GA; Mukhija, P; Vanwert, AL; Witkowski, S; Wolman, AT | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Berti, AD; Nizet, V; Nonejuie, P; Olson, J; Pogliano, J; Proctor, RA; Rose, WE; Sakoulas, G; Sauer, JD; Theisen, E | 1 |
1 review(s) available for nafcillin and cefoxitin
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
7 other study(ies) available for nafcillin and cefoxitin
Article | Year |
---|---|
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration | 2004 |
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding | 2008 |
Staphylococcus aureus PBP4 is essential for beta-lactam resistance in community-acquired methicillin-resistant strains.
Topics: Anti-Bacterial Agents; Bacterial Proteins; Base Sequence; beta-Lactam Resistance; Cefoxitin; Community-Acquired Infections; DNA Primers; DNA, Bacterial; Drug Therapy, Combination; Gene Deletion; Genes, Bacterial; Genetic Complementation Test; Humans; Methicillin Resistance; Methicillin-Resistant Staphylococcus aureus; Mutation; Penicillin-Binding Proteins; Penicillins; Phenotype; Staphylococcal Infections | 2008 |
A mecA-negative strain of methicillin-resistant Staphylococcus aureus with high-level β-lactam resistance contains mutations in three genes.
Topics: Bacterial Proteins; beta-Lactam Resistance; beta-Lactams; Methicillin-Resistant Staphylococcus aureus; Microbial Sensitivity Tests; Mutation; Penicillin-Binding Proteins | 2010 |
Computational analysis of structure-based interactions and ligand properties can predict efflux effects on antibiotics.
Topics: Anti-Bacterial Agents; beta-Lactams; Computational Biology; Drug Resistance, Bacterial; Hydrophobic and Hydrophilic Interactions; Ligands; Membrane Transport Proteins; Microbial Sensitivity Tests; Models, Molecular; Protein Binding; Protein Conformation; Quantitative Structure-Activity Relationship; Regression Analysis; Thermodynamics | 2012 |
Organic anion transporter 3 interacts selectively with lipophilic β-lactam antibiotics.
Topics: Animals; Anti-Bacterial Agents; beta-Lactams; Biological Transport; Cell Line, Transformed; Humans; Mice; Organic Anion Transport Protein 1; Organic Anion Transporters, Sodium-Independent; Solubility; Structure-Activity Relationship | 2013 |
Penicillin Binding Protein 1 Is Important in the Compensatory Response of Staphylococcus aureus to Daptomycin-Induced Membrane Damage and Is a Potential Target for β-Lactam-Daptomycin Synergy.
Topics: Anti-Bacterial Agents; Cefaclor; Cefotaxime; Cefoxitin; Ceftriaxone; Cell Membrane; Daptomycin; Drug Synergism; Drug Therapy, Combination; Gene Expression Regulation, Bacterial; Imipenem; Meropenem; Methicillin-Resistant Staphylococcus aureus; Models, Statistical; Nafcillin; Penicillin-Binding Proteins; Promoter Regions, Genetic; Protein Isoforms; Thienamycins; Transcription, Genetic | 2016 |