Page last updated: 2024-08-17

nad and nicotinamide-beta-riboside

nad has been researched along with nicotinamide-beta-riboside in 129 studies

Research

Studies (129)

TimeframeStudies, this research(%)All Research%
pre-19907 (5.43)18.7374
1990's4 (3.10)18.2507
2000's16 (12.40)29.6817
2010's48 (37.21)24.3611
2020's54 (41.86)2.80

Authors

AuthorsStudies
Abrahamson, JA; Biggs, PJ; Friedlos, F; Knox, RJ1
Cynamon, MH; Godek, CP1
Niven, DF; O'Reilly, T3
Robins, RK; Saunders, PP; Spindler, CD; Tan, MT1
Durand, P; Langrené, S; Le Goffic, F; Sicsic, S1
Kasărov, LB; Moat, AG1
Foster, J; Liu, G; Manlapaz-Ramos, P; Olivera, BM1
Campbell, W; Dwivedi, U; Lindqvist, Y; Lu, G; Schneider, G1
Fiske, MJ; Green, BA; Herbert, M; Kemmer, G; Kraiss, A; Reidl, J; Reilly, TJ; Schlör, S; Schmidt-Brauns, J; Smith, A; Zlotnik, GW1
Goldstein, BM; Jayaram, HN; Lesiak-Watanabe, K; Pankiewicz, KW; Watanabe, KA1
BERNHEIMER, AW; CARLSON, AS; FREEMAN, EB; KELLNER, A1
Bieganowski, P; Brenner, C1
Ali, TH; Elzainy, TA1
Merdanovic, M; Reidl, J; Sauer, E1
Gerlach, G; Reidl, J1
Cappellacci, L; Cimadamore, F; Franchetti, P; Magni, G; Orsomando, G; Petrelli, R; Scotti, S; Sorci, L1
Denu, JM1
Belenky, P; Bogan, KL; Brenner, C; McClure, JM; Racette, FG; Smith, JS1
Cormack, BP; Ma, B; Pan, SJ; Zupancic, ML1
Chan, NY; Sauve, AA; Yang, T1
Sauve, AA1
Belenky, PA; Brenner, C; Moga, TG1
Bogan, KL; Brenner, C1
Kato, M; Lin, SJ; Lu, SP1
Belenky, P; Bogan, KL; Brenner, C; Burant, CF; Evans, C; Kennedy, R; Song, P1
Andreux, PA; Auwerx, J; Cantó, C; Cen, Y; Cettour-Rose, P; Fernandez-Marcos, PJ; Gademann, K; Houtkooper, RH; Oosterveer, MH; Pirinen, E; Rinsch, C; Sauve, AA; Schoonjans, K; Yamamoto, H; Youn, DY1
Chi, Y; Sauve, AA1
Auranen, M; Auwerx, J; Carroll, CJ; Euro, L; Forsström, S; Khan, NA; Paetau, I; Pasila, L; Pirinen, E; Suomalainen, A; Velagapudi, V1
Kato, M; Lin, SJ1
Auwerx, J; Cerutti, R; Dantzer, F; Lamperti, C; Leoni, V; Li, W; Marchet, S; Pirinen, E; Sauve, AA; Schon, EA; Viscomi, C; Zeviani, M1
Brown, KD; Harkcom, W; Huang, JY; Jaffrey, SR; Li, W; Maqsood, S; Pan, Y; Sauve, A; Verdin, E1
Harrington, M1
Berlinguer-Palmini, R; Cavone, L; Chiarugi, A; Felici, R; Lapucci, A; Pratesi, S1
Dölle, C; Khodorkovskiy, M; Kulikova, V; Migaud, ME; Nerinovski, K; Niere, M; Nikiforov, A; Redpath, P; Shabalin, K; Yakimov, A; Ziegler, M1
Auwerx, J; Cantó, C; Fomitchova, A; Gariani, K; Kim, B; Koo, SI; Ku, CS; Lee, JY; Lemos, V; Menzies, KJ; Moullan, N; Park, YK; Perino, A; Pham, TX; Piersigilli, A; Ropelle, ER; Ryu, D; Sauve, AA; Schoonjans, K; Wang, X; Wegner, CJ; Yang, Y; Zhang, H1
Bianchi, G; Bruzzone, S; Emionite, L; Magnone, M; Nahimana, A; Nencioni, A; Raffaelli, N; Raffaghello, L; Sociali, G; Sturla, L; Vigliarolo, T; Zamporlini, F1
Brenner, C; Migaud, ME; Redpath, P; Trammell, SA; Yu, L1
Aebersold, R; Auwerx, J; D'Amico, D; Gariani, K; Luan, P; Lutolf, MP; Menzies, KJ; Ropelle, ER; Ryu, D; Schoonjans, K; Wang, X; Wu, Y; Zhang, H1
Camacho-Pereira, J; Chini, CCS; Chini, EN; Escande, C; Galina, A; Nin, V; Puranik, AS; Reid, JM; Schoon, RA; Tarragó, MG; Warner, GM1
Avelar-González, FJ; Guerrero-Barrera, AL; Jacques, M; Labrie, J; Loera-Muro, A; Oropeza-Navarro, R; Tremblay, YD1
Gioris, IS; Kourtzidis, IA; Kyparos, A; Margaritelis, NV; Nikolaidis, MG; Paschalis, V; Stoupas, AT; Taitzoglou, I; Tsantarliotou, M; Veskoukis, AS; Vrabas, IS1
Baur, JA; Chellappa, K; Davila, A; Davis, JG; Dellinger, RW; Frederick, DW; Gosai, SJ; Gregory, BD; Khurana, TS; Liu, L; Loro, E; Migaud, ME; Mourkioti, F; Nakamaru-Ogiso, E; Quinn, WJ; Rabinowitz, JD; Redpath, P; Silverman, IM; Tichy, ED1
Abel, ED; Brenner, C; Dellinger, RW; Jaksch, F; Li, Z; Migaud, ME; Redpath, P; Schmidt, MS; Trammell, SA; Weidemann, BJ1
Auwerx, J; Boutant, M; Brenner, C; Canela, N; Cantó, C; Joffraud, M; Kulkarni, SS; Migaud, ME; Ras, R; Ratajczak, J; Redpath, P; Rodrigues, M; Trammell, SA; Yanes, O1
Agarwal, B; Baur, JA; Chellappa, K; Davis, JG; Dellinger, RW; Moffitt, A; Mukherjee, S; Ndungu, J1
Amici, A; Mazzola, F; Mozzon, M; Orsomando, G; Raffaelli, N; Ruggieri, S; Ummarino, S; Zamporlini, F1
Brenner, C; Hamity, MV; Hammond, DL; Schmidt, MS; Walder, RY; White, SR1
Auwerx, J; Beck, JS; Counts, SE; D'Amico, D; Mouchiroud, L; Moullan, N; Potenza, F; Rietsch, S; Romani, M; Schmid, AW; Sorrentino, V; Zhang, H1
Airhart, SE; Anderson, GD; Nagana Gowda, GA; O'Brien, KD; Raftery, D; Risler, LJ; Shen, DD; Shireman, LM; Tian, R1
Baczkó, I; Blanc, J; Brenner, C; Breton, M; Decaux, JF; Deloux, R; Diguet, N; Garnier, A; Gouge, A; Gressette, M; Lavery, GG; Li, Z; Manoury, B; Mericskay, M; Mougenot, N; Piquereau, J; Tannous, C; Trammell, SAJ; Zoll, J1
Baur, JA; Imai, SI; Yoshino, J1
Sauve, AA; Zhang, N1
Goody, MF; Henry, CA1
Armstrong, ML; Chonchol, M; Denman, BA; Martens, CR; Mazzo, MR; McQueen, MB; Reisdorph, N; Seals, DR1
Cui, J; Fan, R; Huang, Y; Qian, X; Ren, F; Wang, Q; Wei, L; Xiong, X; Zhao, B1
Huang, Y; Jiang, R; Liang, B; Lin, X; Ling, W; Pang, N; Pei, L; Qiu, Y; Wan, T; Wang, S; Yang, L; Ye, M; Zhang, Z1
Tian, R; Walker, MA1
Baden, P; Bandmann, O; De Cicco, S; Deleidi, M; Di Napoli, G; Gasser, T; Giunta, I; Heimrich, B; Ivanyuk, D; Keatinge, M; Nestel, S; Panagiotakopoulou, V; Pruszak, J; Sanchez-Martinez, A; Schöndorf, DC; Schwarz, LK; Whitworth, AJ; Yu, C1
Baur, JA; Chellappa, K; Davila, A; Liu, L; Migaud, ME; Nakamaru-Ogiso, E; Paolella, LM; Rabinowitz, JD; Redpath, P; Zhang, Z1
Dolopikou, CF; Kourtzidis, IA; Kyparos, A; Margaritelis, NV; Nikolaidis, MG; Paschalis, V; Theodorou, AA; Tsantarliotou, MP; Tsiftsis, AN; Veskoukis, AS; Vrabas, IS; Zervos, IA1
Brenner, C; Cambronne, XA; Cohen, MS; Goodman, RH; Liu, HW; Migaud, ME; Schmidt, MS; Smith, CB1
Brenner, C; Chadda, A; Ear, PH; Gumusoglu, SB; Kadel, J; Malicoat, J; Migaud, ME; Moore, MM; Schmidt, MS; Stevens, HE; Vogeler, S1
Wan, Y; Yang, D1
Badalzadeh, R; Hosseini, L; Mahmoudi, J; Vafaee, MS1
Auwerx, J; Campos, V; Canto, C; Cheng, WC; Cherix, S; Coukos, G; Deplancke, B; Duchosal, MA; Ehrbar, M; Giger, S; Girotra, M; Ho, PC; Li, TY; Lutolf, MP; Nahimana, A; Naveiras, O; Nikitin, G; Oggier, A; Petrova, TV; Pirinen, E; Ragusa, S; Rainer, PY; Ratajczak, J; Rojas-Sutterlin, S; Romero, P; Ryu, D; Semilietof, A; Sizzano, F; Stefanidis, E; Tauzin, L; Trachsel, V; Tratwal, J; Vanhecke, D; Vannini, N; Yersin, Y; Zhang, L1
Guarente, L; Igarashi, M; Jaksch, F; Kadowaki, T; Miura, M; Williams, E; Yamauchi, T1
Garten, A; Grahnert, A; Hauschildt, S; Müller, G; Petin, K; Sack, U; Weiss, R1
Bae, M; Hu, S; Kang, H; Kim, MB; Lee, JY; Lee, Y; Park, YK; Pham, TX1
Brockman, J; Cao, T; Fan, GC; Ni, R; Peng, T; Wang, G; Zhang, L; Zhang, Y; Zheng, D; Zheng, M; Zhong, H1
Brenner, C; Conze, D; Kruger, CL1
Akerman, I; Brenner, C; Burley, CV; Cartwright, DM; Doig, CL; Elhassan, YS; Fletcher, RS; Garten, A; Jenkinson, N; Kluckova, K; Lai, YC; Lavery, GG; Lucas, SJE; Manolopoulos, KN; Nightingale, P; Oakey, L; Philp, A; Schmidt, MS; Seabright, A; Tennant, DA; Wallis, GA; Wilson, M1
Baptista, IL; Braga, RR; Cintra, DE; Cordeiro, AV; Crisol, BM; da Silva, ASR; Gaspar, RC; Lenhare, L; Moura, LP; Muñoz, VR; Pauli, JR; Ropelle, ER; Veiga, CB1
Boutant, M; Canto, C; Cercillieux, A; Giner, MP; Giroud-Gerbetant, J; Joffraud, M; Kulkarni, SS; Moco, S; Ratajczak, J; Sambeat, A; Sanchez-Garcia, JL; Valera-Alberni, M; Valsesia, A1
Compernolle, V; Delabie, W; Devloo, R; Feys, HB; Maes, W; Van den Hauwe, MR; Vanhoorelbeke, K1
Agerholm, M; Altıntaş, A; Barrès, R; Chubanava, S; Dollerup, OL; Høyer, KF; Jessen, N; Larsen, S; Lavery, GG; Møller, AB; Prats, C; Ringgaard, S; Stødkilde-Jørgensen, H; Søndergård, SD; Treebak, JT1
Bartova, S; Canto, C; Cercillieux, A; Giner, MP; Giroud-Gerbetant, J; Houtkooper, RH; Joffraud, M; Makarov, MV; Migaud, ME; Moco, S; Sánchez-García, JL; Zapata-Pérez, R1
Braidy, N; Liu, Y1
Deterding, LJ; Fan, W; Kabanov, AV; Lee, E; Li, JL; Li, L; Li, W; Li, X; Lih, FB; Lim, C; Liu, J; Locasale, JW; Makarov, MV; Migaud, ME; Randall, TA; Shats, I; Sokolsky, M; Williams, JG; Wu, X; Xu, X1
Aarts, SABM; Auwerx, J; Connell, NJ; de Wit, VHW; Elfrink, HL; Havekes, B; Hoeks, J; Houtkooper, RH; Lindeboom, L; Lutgens, E; Mevenkamp, J; Moonen, MPB; Phielix, E; Remie, CME; Roumans, KHM; Schomakers, BV; Schrauwen, P; Schrauwen-Hinderling, VB; van de Weijer, T; Zapata-Pérez, R1
Chronister, WD; Fragola, G; Li, Z; Mabb, AM; Mao, H; McConnell, MJ; Niehaus, JK; Simon, JM; Taylor-Blake, B; Yuan, H; Zylka, MJ1
Abdullah, L; Crawford, F; Cseresznye, A; Darcey, T; Evans, JE; Joshi, U; Keegan, AP; Klimas, N; Mouzon, B; Mullan, M; Oberlin, S; Ojo, J; Paris, D; Pearson, A; Saltiel, N; Sullivan, K1
Anton, SD; Christou, DD; Custodero, C; Jeon, YK; Leeuwenburgh, C; Mankowski, RT; McDermott, MM; Saini, SK; Shin, MJ1
Choi, JY; Kang, BE; Ryu, D; Stein, S1
Airhart, S; Liu, Y; O'Brien, KD; Qiu, Y; Stempien-Otero, A; Tian, R; Wang, DD; Zhou, B1
Dellinger, R; Guarente, LP; Parikh, SM; Rhee, EP; Simic, P; Vela Parada, XF1
Boatright, JH; Brenner, C; Chrenek, MA; Girardot, PE; Henneman, NF; Li, Y; Nickerson, JM; Sellers, JT; Wang, J; Zhang, X1
Xia, J; Xu, B; Zhao, N1
Alter, BP; Bohr, VA; Demarest, TG; Giri, N; Gong, Y; Harrington, L; Liu, Y; Savage, SA; Stock, AJ; Sun, C; Wang, K; Yang, B1
Alhammad, YMO; Brenner, C; Cohen, MS; Fehr, AR; Heer, CD; Perlman, S; Sanderson, DJ; Schmidt, MS; Trammell, SAJ; Voth, LS1
Breaker, RR; Corey, L; Higgs, G; Malkowski, SN; Panchapakesan, SSS1
Becherer, JD; Frederick, DW; Kramer, HF; McDougal, AV; Nuzzo, A; Preugschat, F; Semenas, M; Sévin, DC; Stewart, EL; Ulrich, JC; Vappiani, J1
Alandes, S; Alcácer, J; Banacloche, S; Benlloch, M; Colomer, N; Coronado, JA; Drehmer, E; Estrela, JM; Jihad-Jebbar, A; López-Blanch, R; Marchio, P; Obrador, E; Rivera, P; Salvador, R; Vallés, SL1
Ashcroft, SP; Dansereau, LC; Elhassan, YS; Joanisse, S; Koay, YC; Lavery, GG; O'Sullivan, JF; Philp, A; Philp, AM; Quek, LE; Stocks, B; Wallis, GA1
Khodorkovskiy, M; Kropotov, A; Kulikova, V; Migaud, ME; Nerinovski, K; Nikiforov, A; Solovjeva, L; Sudnitsyna, J; Svetlova, M; Yakimov, A; Ziegler, M1
Babbar, M; Bohr, VA; Croteau, DL; Dan, X; Demarest, T; Hou, Y; Kimura, R; Krishnamurthy, S; Lee, JH; Mattson, MP; McDevitt, R; Wechter, N; Yang, B; Zhang, S; Zhang, Y1
Brenner, C; Hattori, T; Heer, CD; Higashida, H; Hori, O; Ishii, H; Nguyen, DT; O'Meally, D; Okamoto, H; Roboon, J; Takarada-Iemata, M; Yamamoto, Y1
Altamirano, F; Elnwasany, A; Gillette, TG; Hill, JA; Jiang, N; Kass, DA; Lavandero, S; Lee, DI; Schiattarella, GG; Szweda, LI; Szweda, PA; Tong, D; Verdin, E; Yoo, H1
Cao, B; Chen, X; Das Gupta, K; Deshpande, N; Fulton, M; Hatwell-Humble, J; Heazlewood, CK; Heazlewood, SY; Kapetanovic, R; Kraus, F; Li, J; Naval-Sanchez, M; Nefzger, CM; Nguyen, Q; Nilsson, SK; Parton, RG; Pham, T; Polo, JM; Rae, J; Ryan, MT; Schröder, J; Sun, X; Sun, YBY; Sweet, MJ; Williams, B; Yari, H1
Andersen, CB; Egstrand, S; Lewin, E; Mace, ML; Morevati, M; Nordholm, A; Olgaard, K; Salmani, R1
Ahmed, MS; Attramadal, H; Aukrust, P; Bergersen, LH; Esbensen, QY; Halvorsen, B; Lauritzen, KH; Olsen, MB; Rinholm, JE; Sverkeli, LJ; Yang, K; Yndestad, A; Ziegler, M1
Hayat, F; Migaud, ME; Sverkeli, LJ; Ziegler, M1
Podyacheva, E; Toropova, Y1
Brakedal, B; Brekke, N; Craven, AR; Diab, J; Dölle, C; Eidelberg, D; Grüner, R; Haugarvoll, K; Ma, Y; Nido, GS; Peng, S; Riemer, F; Schwarzlmüller, T; Skeie, GO; Skjeie, V; Sverkeli, L; Tysnes, OB; Tzoulis, C; Varhaug, K; Ziegler, M1
Cao, J; Deng, C; Deng, Q; Ding, X; Guo, C; Liu, Q; Qiu, L; Tian, B; Ye, C; Zhang, X; Zhang, Y1
Cheng, YH; Jiang, YF; Luo, X; Qu, WS; Wang, W; Wei, XJ; Xu, Z; Yuan, Y; Zhao, JH; Zong, WF1
Chen, Z; Dong, H; Fang, J; Mao, S; Shi, H; Su, K; Wu, H; Xing, Y; Yu, D; Zhang, J1
Bonet, ML; Palou, A; Ribot, J; Serrano, A1
Bormann, MK; Cohen, BM; Healy, RA; Lee, Y; Ryu, WI; Shen, M; Sonntag, KC1
Cantó, C; Ciarlo, E; Giner, MP; Giroud-Gerbetant, J; Hayat, F; Joffraud, M; Migaud, ME; Moco, S; Rumpler, M; Sanchez-Garcia, JL1
Armenian, SH; Baur, J; Bhandari, R; Dedio, A; Guzman, T; Hampton, I; Lee, K; Lin, K; Lindenfeld, L; Manoukian, S; McCormack, S; Mostoufi-Moab, S; Ness, K; Putt, M; Song, M; Wade, K1
Canto, C; Cercillieux, A; Ciarlo, E1
Baur, JA; Butic, A; Huang, J; Morrow, R; Perry, C; Schaefer, PM; Tan, W; Wallace, DC; Yardeni, T1
Borrelli, M; Kahn, B; Libby, T1
Cen, Y; Donu, D; Sharma, C1
Antipova, M; Gambaryan, S; Khodorkovskiy, M; Kropotov, A; Kulikova, V; Migaud, ME; Nerinovski, K; Nikiforov, A; Plusnina, A; Solovjeva, L; Sudnitsyna, J; Svetlova, M; Yakimov, A; Ziegler, M1
Li, H; Sun, Y; Wang, H; Xu, J; Yang, Q; Zeng, X1
Goncharova, I; Martynov, M; Mukhametdinova, D; N Yu, N; Osipova, S; Podyacheva, E; Sviridov, E; Toropova, Y; V A, V; Zelinskaya, I1
Bazhin, A; Cantó, C; Coukos, G; Giordano Attianese, GMP; Goun, E; Irving, M; Joffraud, M; Khodakivskyi, P; Maric, T; Mikhaylov, G; Solodnikova, E; Yevtodiyenko, A1
Chen, GB; Francisco, JC; Li, S; Singh, BK; Thimmukonda, NK; Yau, WW; Yen, PM; Zhou, J1
Costa, VP; Goulart Nacácio E Silva, S; Occhiutto, ML1
Huang, Z; Li, N; Song, F; Wang, X; Zhou, J1
Alegre, GFS; Pastore, GM1
Chen, LW; Chen, XY; Dong, FB; Dong, W; Lu, ZQ; Xiao, Z; Yang, XY; Yao, RQ; Yao, YM; Zhang, C; Zhang, J; Zhao, GJ1
Damgaard, MV; Treebak, JT1
Degano, M; Galasyn, GS; Kerin, F; Nyitray, MM; Parkin, DW; Patrone, M; Stockman, BJ1
Bejenaru, C; Bejenaru, LE; Benner, SA; Biţă, A; Ciocîlteu, MV; Mogoşanu, GD; Neamţu, J; Nicolaescu, OE; Pîrvu, AS; Radu, A; Rău, G; Scorei, IR1
Af Geijerstam, SA; Berven, H; Dölle, C; Haugarvoll, K; Kverneng, S; Sheard, E; Skeie, GO; Søgnen, M; Tzoulis, C1

Reviews

19 review(s) available for nad and nicotinamide-beta-riboside

ArticleYear
Significance of V-factor dependency in the taxonomy of Haemophilus species and related organisms.
    International journal of systematic bacteriology, 1990, Volume: 40, Issue:1

    Topics: Actinobacillus; Haemophilus; NAD; Niacinamide; Nicotinamide Mononucleotide; Pasteurella; Pasteurellaceae; Pyridines; Pyridinium Compounds; Structure-Activity Relationship

1990
NAD+ utilization in Pasteurellaceae: simplification of a complex pathway.
    Journal of bacteriology, 2006, Volume: 188, Issue:19

    Topics: Animals; Bacterial Proteins; Humans; NAD; Niacinamide; Pasteurellaceae; Pyridinium Compounds; Repressor Proteins

2006
NAD+ and vitamin B3: from metabolism to therapies.
    The Journal of pharmacology and experimental therapeutics, 2008, Volume: 324, Issue:3

    Topics: Animals; Humans; NAD; Niacinamide; Pyridinium Compounds; Signal Transduction

2008
Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition.
    Annual review of nutrition, 2008, Volume: 28

    Topics: Animals; Caloric Restriction; Candida glabrata; Dietary Supplements; Dyslipidemias; Humans; NAD; Niacin; Niacinamide; Nutritional Requirements; Pyridinium Compounds

2008
Nicotinamide riboside, a trace nutrient in foods, is a vitamin B3 with effects on energy metabolism and neuroprotection.
    Current opinion in clinical nutrition and metabolic care, 2013, Volume: 16, Issue:6

    Topics: Alzheimer Disease; Animals; Brain; Disease Models, Animal; Energy Metabolism; Humans; Insulin Resistance; Intracellular Signaling Peptides and Proteins; Mitochondrial Turnover; Muscle, Skeletal; NAD; Neuroprotective Agents; Niacinamide; Phosphotransferases (Alcohol Group Acceptor); Pyridinium Compounds

2013
NAD
    Cell metabolism, 2018, 03-06, Volume: 27, Issue:3

    Topics: Aging; Animals; Humans; NAD; Niacinamide; Nicotinamide Mononucleotide; Pyridinium Compounds

2018
A need for NAD+ in muscle development, homeostasis, and aging.
    Skeletal muscle, 2018, 03-07, Volume: 8, Issue:1

    Topics: Aging; Animals; Homeostasis; Humans; Intracellular Space; Muscle Development; Muscle Proteins; Muscle, Skeletal; Muscular Diseases; NAD; Niacinamide; Nicotinamide Phosphoribosyltransferase; Pyridinium Compounds; Regeneration; Signal Transduction

2018
Nicotinamide adenine dinucleotide emerges as a therapeutic target in aging and ischemic conditions.
    Biogerontology, 2019, Volume: 20, Issue:4

    Topics: Aging; Drug Discovery; Humans; Ischemia; Mitochondria; NAD; Niacinamide; Nicotinamide Mononucleotide; Pyridinium Compounds

2019
NAD+ therapy in age-related degenerative disorders: A benefit/risk analysis.
    Experimental gerontology, 2020, Volume: 132

    Topics: Aging; Animals; Humans; Inflammation; Mice; NAD; Neurodegenerative Diseases; Niacinamide; Nicotinamide Mononucleotide; Oxidative Stress; Pyridinium Compounds; Rats; Risk Assessment

2020
Nicotinamide riboside-A missing piece in the puzzle of exercise therapy for older adults?
    Experimental gerontology, 2020, Volume: 137

    Topics: Aged; Animals; Exercise Therapy; Humans; Muscle, Skeletal; NAD; Niacinamide; Pyridinium Compounds

2020
Implications of NAD
    European journal of clinical investigation, 2020, Volume: 50, Issue:10

    Topics: ADP-ribosyl Cyclase; Aging; Animals; Biosynthetic Pathways; Carboxy-Lyases; Clinical Trials as Topic; Enzyme Inhibitors; Gastrointestinal Microbiome; Humans; NAD; Niacinamide; Nicotinamide Mononucleotide; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases; Probiotics; Pyridinium Compounds; Sirtuins; Translational Research, Biomedical

2020
Nicotinamide Riboside for the Prevention and Treatment of Doxorubicin Cardiomyopathy. Opportunities and Prospects.
    Nutrients, 2021, Sep-28, Volume: 13, Issue:10

    Topics: Animals; Antibiotics, Antineoplastic; Biomarkers; Cardiomyopathies; Cardiotonic Agents; Cardiotoxicity; Disease Management; Disease Models, Animal; Disease Susceptibility; Doxorubicin; Humans; Metabolic Networks and Pathways; NAD; Niacinamide; Oxidative Stress; Pyridinium Compounds; Signal Transduction; Sirtuins

2021
Balancing NAD
    Cellular and molecular life sciences : CMLS, 2022, Aug-02, Volume: 79, Issue:8

    Topics: Animals; Disease Models, Animal; Mice; NAD; Niacinamide; Pyridinium Compounds

2022
A Narrative Review of Nicotinamide Adenine Dinucleotide (NAD)+ Intermediates Nicotinamide Riboside and Nicotinamide Mononucleotide for Keratinocyte Carcinoma Risk Reduction.
    Journal of drugs in dermatology : JDD, 2022, Oct-01, Volume: 21, Issue:10

    Topics: Carcinoma; Humans; Keratinocytes; NAD; Niacinamide; Nicotinamide Mononucleotide; Pyridinium Compounds; Risk Reduction Behavior

2022
Emerging Role of Nicotinamide Riboside in Health and Diseases.
    Nutrients, 2022, Sep-20, Volume: 14, Issue:19

    Topics: Humans; NAD; Niacinamide; Pyridinium Compounds; Vitamins

2022
The use of Nicotinamide and Nicotinamide riboside as an adjunct therapy in the treatment of glaucoma.
    European journal of ophthalmology, 2023, Volume: 33, Issue:5

    Topics: Glaucoma; Humans; NAD; Niacinamide; Pyridinium Compounds

2023
NAD+ Precursors Nicotinamide Mononucleotide (NMN) and Nicotinamide Riboside (NR): Potential Dietary Contribution to Health.
    Current nutrition reports, 2023, Volume: 12, Issue:3

    Topics: Diet; Humans; NAD; Niacinamide; Nicotinamide Mononucleotide

2023
What is really known about the effects of nicotinamide riboside supplementation in humans.
    Science advances, 2023, 07-21, Volume: 9, Issue:29

    Topics: Dietary Supplements; Humans; NAD; Niacinamide; Pyridinium Compounds

2023
Nicotinamide Riboside, a Promising Vitamin B
    Molecules (Basel, Switzerland), 2023, Aug-15, Volume: 28, Issue:16

    Topics: Borates; Healthy Aging; Humans; Longevity; NAD; Vitamins

2023

Trials

11 trial(s) available for nad and nicotinamide-beta-riboside

ArticleYear
An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers.
    PloS one, 2017, Volume: 12, Issue:12

    Topics: Administration, Oral; Adult; Dietary Supplements; Female; Healthy Volunteers; Humans; Infant, Newborn; Male; Middle Aged; NAD; Niacinamide; Pyridinium Compounds; Young Adult

2017
Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD
    Nature communications, 2018, 03-29, Volume: 9, Issue:1

    Topics: Aged; Blood Pressure; Caloric Restriction; Double-Blind Method; Female; Humans; Male; Middle Aged; NAD; Niacinamide; Pyridinium Compounds; Vascular Stiffness

2018
Safety and Metabolism of Long-term Administration of NIAGEN (Nicotinamide Riboside Chloride) in a Randomized, Double-Blind, Placebo-controlled Clinical Trial of Healthy Overweight Adults.
    Scientific reports, 2019, 07-05, Volume: 9, Issue:1

    Topics: Administration, Oral; Adult; Dietary Supplements; Double-Blind Method; Female; Healthy Volunteers; Humans; Male; Middle Aged; NAD; Niacinamide; Overweight; Provitamins; Pyridinium Compounds; Treatment Outcome

2019
Nicotinamide Riboside Augments the Aged Human Skeletal Muscle NAD
    Cell reports, 2019, 08-13, Volume: 28, Issue:7

    Topics: Aged; Aged, 80 and over; Aging; Anti-Inflammatory Agents; Cross-Sectional Studies; Cytokines; Double-Blind Method; Humans; Male; Metabolome; Muscle, Skeletal; NAD; Niacinamide; Pyridinium Compounds; Transcriptome

2019
Nicotinamide riboside does not alter mitochondrial respiration, content or morphology in skeletal muscle from obese and insulin-resistant men.
    The Journal of physiology, 2020, Volume: 598, Issue:4

    Topics: Humans; Insulin Resistance; Male; Middle Aged; Mitochondria, Muscle; Muscle, Skeletal; NAD; Niacinamide; Nicotinamide Phosphoribosyltransferase; Obesity; Pyridinium Compounds

2020
Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans.
    The American journal of clinical nutrition, 2020, 08-01, Volume: 112, Issue:2

    Topics: Acetylcarnitine; Aged; Body Composition; Dietary Supplements; Female; Humans; Male; Middle Aged; Muscle, Skeletal; NAD; Niacinamide; Obesity; Overweight; Pyridinium Compounds

2020
Boosting NAD level suppresses inflammatory activation of PBMCs in heart failure.
    The Journal of clinical investigation, 2020, 11-02, Volume: 130, Issue:11

    Topics: Female; Heart Failure; Humans; Inflammation; Leukocytes, Mononuclear; Male; Mitochondria, Heart; Models, Cardiovascular; NAD; Niacinamide; Oxygen Consumption; Pyridinium Compounds

2020
Nicotinamide riboside with pterostilbene (NRPT) increases NAD
    BMC nephrology, 2020, 08-13, Volume: 21, Issue:1

    Topics: Acute Kidney Injury; Aged; Aged, 80 and over; Creatinine; Dose-Response Relationship, Drug; Double-Blind Method; Drug Combinations; Female; Glomerular Filtration Rate; Humans; Male; Middle Aged; NAD; Niacinamide; Pilot Projects; Pyridinium Compounds; Stilbenes

2020
The NADPARK study: A randomized phase I trial of nicotinamide riboside supplementation in Parkinson's disease.
    Cell metabolism, 2022, 03-01, Volume: 34, Issue:3

    Topics: Dietary Supplements; Humans; NAD; Niacinamide; Parkinson Disease; Pyridinium Compounds

2022
Exercise training and NR supplementation to improve muscle mass and fitness in adolescent and young adult hematopoietic cell transplant survivors: a randomized controlled trial {1}.
    BMC cancer, 2022, Jul-19, Volume: 22, Issue:1

    Topics: Adolescent; Adult; Dietary Supplements; Exercise; Hematopoietic Stem Cell Transplantation; Humans; Muscle, Skeletal; NAD; Niacinamide; Pyridinium Compounds; Quality of Life; Sarcopenia; Survivors; Young Adult

2022
NR-SAFE: a randomized, double-blind safety trial of high dose nicotinamide riboside in Parkinson's disease.
    Nature communications, 2023, Nov-28, Volume: 14, Issue:1

    Topics: Double-Blind Method; Humans; NAD; Niacinamide; Parkinson Disease; Pyridinium Compounds

2023

Other Studies

99 other study(ies) available for nad and nicotinamide-beta-riboside

ArticleYear
Potentiation of CB 1954 cytotoxicity by reduced pyridine nucleotides in human tumour cells by stimulation of DT diaphorase activity.
    Biochemical pharmacology, 1992, Nov-03, Volume: 44, Issue:9

    Topics: Antineoplastic Agents; Aziridines; DNA, Neoplasm; Drug Synergism; Humans; Intracellular Fluid; Kinetics; NAD; NAD(P)H Dehydrogenase (Quinone); Niacinamide; Pyridinium Compounds; Ribonucleosides; Stimulation, Chemical; Tumor Cells, Cultured

1992
In vitro evaluation of nicotinamide riboside analogs against Haemophilus influenzae.
    Antimicrobial agents and chemotherapy, 1990, Volume: 34, Issue:8

    Topics: Chromatography, High Pressure Liquid; Chromatography, Thin Layer; Escherichia coli; Haemophilus Infections; Haemophilus influenzae; Magnetic Resonance Spectroscopy; NAD; Niacinamide; Pyridinium Compounds

1990
Phosphorylation of 3-deazaguanosine by nicotinamide riboside kinase in Chinese hamster ovary cells.
    Cancer research, 1989, Dec-01, Volume: 49, Issue:23

    Topics: Animals; Cell Line; Cell Survival; Cricetinae; Guanosine; NAD; Niacinamide; Phosphorylation; Phosphotransferases; Phosphotransferases (Alcohol Group Acceptor); Pyridinium Compounds; Substrate Specificity

1989
Activity of NMN+, nicotinamide ribose and analogs in alcohol oxidation promoted by horse-liver alcohol dehydrogenase. Improvement of this activity and structural requirements of the pyridine nucleotide part of the NAD+ coenzyme.
    European journal of biochemistry, 1986, Mar-03, Volume: 155, Issue:2

    Topics: Alcohol Dehydrogenase; Alcohol Oxidoreductases; Alcohols; Animals; Coenzymes; Horses; Kinetics; Liver; NAD; Niacinamide; Nicotinamide Mononucleotide; Oxidation-Reduction; Pyridinium Compounds; Structure-Activity Relationship

1986
Defining the metabolic and growth responses of porcine haemophili to exogenous pyridine nucleotides and precursors.
    Journal of general microbiology, 1986, Volume: 132, Issue:3

    Topics: Animals; Glucose; Haemophilus; NAD; NADP; Niacinamide; Nicotinamide Mononucleotide; Pyridinium Compounds; Swine

1986
Pyridine nucleotide metabolism by extracts derived from Haemophilus parasuis and H. pleuropneumoniae.
    Canadian journal of microbiology, 1986, Volume: 32, Issue:9

    Topics: Adenosine Triphosphate; Haemophilus; NAD; NADP; Niacinamide; Nicotinamide Mononucleotide; Pyridinium Compounds; Species Specificity

1986
Convenient method for enzymic synthesis of [14C]nicotinamide riboside.
    Methods in enzymology, 1980, Volume: 66

    Topics: Amidohydrolases; Carbon Radioisotopes; Isotope Labeling; N-Glycosyl Hydrolases; NAD; Niacinamide; Nucleotidases; Proteus vulgaris; Pyridinium Compounds; Pyrophosphatases; Ribonucleosides

1980
Nucleoside salvage pathway for NAD biosynthesis in Salmonella typhimurium.
    Journal of bacteriology, 1982, Volume: 152, Issue:3

    Topics: NAD; Niacinamide; Nicotinamide Mononucleotide; Phosphorylation; Pyridinium Compounds; Salmonella typhimurium

1982
Structural studies on corn nitrate reductase: refined structure of the cytochrome b reductase fragment at 2.5 A, its ADP complex and an active-site mutant and modeling of the cytochrome b domain.
    Journal of molecular biology, 1995, May-19, Volume: 248, Issue:5

    Topics: Adenosine Diphosphate; Amino Acid Sequence; Animals; Binding Sites; Crystallization; Cytochrome Reductases; Electron Transport; Flavin-Adenine Dinucleotide; Models, Molecular; Molecular Sequence Data; NAD; Niacinamide; Nitrate Reductases; Peptide Fragments; Point Mutation; Protein Conformation; Pyridinium Compounds; Recombinant Proteins; Zea mays

1995
NadN and e (P4) are essential for utilization of NAD and nicotinamide mononucleotide but not nicotinamide riboside in Haemophilus influenzae.
    Journal of bacteriology, 2001, Volume: 183, Issue:13

    Topics: Bacterial Outer Membrane Proteins; Bacterial Proteins; Biological Transport; Esterases; Haemophilus influenzae; Lipoproteins; Models, Biological; Multienzyme Complexes; NAD; Niacinamide; Nicotinamide Mononucleotide; Nucleotidases; Pyridinium Compounds; Pyrophosphatases

2001
The chemistry of nicotinamide adenine dinucleotide (NAD) analogues containing C-nucleosides related to nicotinamide riboside.
    Current medicinal chemistry, 2002, Volume: 9, Issue:7

    Topics: Antineoplastic Agents; Cell Survival; Humans; IMP Dehydrogenase; NAD; Niacinamide; Organoselenium Compounds; Pyridinium Compounds; Ribavirin; Ribonucleosides; Ribonucleotides; Tumor Cells, Cultured

2002
A streptococcal enzyme that acts specifically upon diphosphopyridine nucleotide: characterization of the enzyme and its separation from streptolysin O.
    The Journal of experimental medicine, 1957, Jul-01, Volume: 106, Issue:1

    Topics: Bacterial Proteins; NAD; Niacinamide; Phosphoric Monoester Hydrolases; Pyridinium Compounds; Streptococcus; Streptolysins

1957
Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans.
    Cell, 2004, May-14, Volume: 117, Issue:4

    Topics: Chromosomes, Human, Pair 9; Energy Metabolism; Evolution, Molecular; Fungi; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Fungal; Humans; Intracellular Signaling Peptides and Proteins; Molecular Sequence Data; NAD; Niacinamide; Nucleosides; Phosphorylation; Phosphotransferases (Alcohol Group Acceptor); Pyridinium Compounds; Ribavirin; Saccharomyces cerevisiae Proteins; Sequence Homology, Amino Acid; Sequence Homology, Nucleic Acid

2004
NAD deamidation "a new reaction" by an enzyme from Aspergillus terreus DSM 826.
    Antonie van Leeuwenhoek, 2005, Volume: 87, Issue:2

    Topics: Acetamides; Acrylic Resins; Asparagine; Aspergillus; Chromatography, Liquid; Deamination; Enzyme Inhibitors; Enzyme Stability; Freezing; Glutamine; Hydrogen-Ion Concentration; Kinetics; NAD; Niacinamide; Nicotinamide Mononucleotide; Pyridinium Compounds; Substrate Specificity; Temperature

2005
Coupling of NAD+ biosynthesis and nicotinamide ribosyl transport: characterization of NadR ribonucleotide kinase mutants of Haemophilus influenzae.
    Journal of bacteriology, 2005, Volume: 187, Issue:13

    Topics: Amino Acid Motifs; Bacterial Proteins; Catalytic Domain; Cell Membrane; Haemophilus influenzae; Mutation; NAD; Niacinamide; Nicotinamide Phosphoribosyltransferase; Pentosyltransferases; Phosphorylation; Phosphotransferases; Protein Transport; Pyridinium Compounds; Repressor Proteins; Ribonucleotides

2005
Initial-rate kinetics of human NMN-adenylyltransferases: substrate and metal ion specificity, inhibition by products and multisubstrate analogues, and isozyme contributions to NAD+ biosynthesis.
    Biochemistry, 2007, Apr-24, Volume: 46, Issue:16

    Topics: Cell Line; Cell Line, Tumor; Chlorides; Humans; Isoenzymes; Kinetics; Magnesium Chloride; NAD; Niacinamide; Nicotinamide-Nucleotide Adenylyltransferase; Pyridinium Compounds; Ribavirin; Substrate Specificity; Zinc Compounds

2007
Vitamins and aging: pathways to NAD+ synthesis.
    Cell, 2007, May-04, Volume: 129, Issue:3

    Topics: Aging; Animals; Histone Deacetylases; Humans; Longevity; NAD; Niacinamide; Pyridinium Compounds; Saccharomyces cerevisiae; Silent Information Regulator Proteins, Saccharomyces cerevisiae; Sirtuin 2; Sirtuins; Vitamins

2007
Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+.
    Cell, 2007, May-04, Volume: 129, Issue:3

    Topics: Gene Silencing; Histone Deacetylases; Metabolic Networks and Pathways; N-Glycosyl Hydrolases; NAD; Niacin; Niacinamide; Nicotinamidase; Phosphotransferases (Alcohol Group Acceptor); Purine-Nucleoside Phosphorylase; Pyridinium Compounds; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Signal Transduction; Silent Information Regulator Proteins, Saccharomyces cerevisiae; Sirtuin 2; Sirtuins

2007
Assimilation of NAD(+) precursors in Candida glabrata.
    Molecular microbiology, 2007, Volume: 66, Issue:1

    Topics: Animals; Candida glabrata; Gene Deletion; Metabolic Networks and Pathways; Mice; N-Glycosyl Hydrolases; NAD; Niacin; Niacinamide; Nicotinamidase; Phosphotransferases (Alcohol Group Acceptor); Pyridinium Compounds

2007
Syntheses of nicotinamide riboside and derivatives: effective agents for increasing nicotinamide adenine dinucleotide concentrations in mammalian cells.
    Journal of medicinal chemistry, 2007, Dec-27, Volume: 50, Issue:26

    Topics: Animals; Cell Line; Cell Line, Tumor; Cell Survival; Esters; Humans; Mice; NAD; Niacinamide; Nucleosides; Pyridinium Compounds; Structure-Activity Relationship

2007
Saccharomyces cerevisiae YOR071C encodes the high affinity nicotinamide riboside transporter Nrt1.
    The Journal of biological chemistry, 2008, Mar-28, Volume: 283, Issue:13

    Topics: Biological Transport; Hydrogen-Ion Concentration; Kinetics; Membrane Transport Proteins; Mutation; NAD; Niacinamide; Nucleoside Transport Proteins; Protein Binding; Pyridinium Compounds; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins

2008
Assimilation of endogenous nicotinamide riboside is essential for calorie restriction-mediated life span extension in Saccharomyces cerevisiae.
    The Journal of biological chemistry, 2009, Jun-19, Volume: 284, Issue:25

    Topics: Animals; Caloric Restriction; Genes, Fungal; Histone Deacetylases; Hot Temperature; Longevity; Mammals; Models, Biological; Mutation; N-Glycosyl Hydrolases; NAD; Niacinamide; Pentosyltransferases; Pyridinium Compounds; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Silent Information Regulator Proteins, Saccharomyces cerevisiae; Sirtuin 2; Sirtuins; Stress, Physiological; Time Factors

2009
Identification of Isn1 and Sdt1 as glucose- and vitamin-regulated nicotinamide mononucleotide and nicotinic acid mononucleotide [corrected] 5'-nucleotidases responsible for production of nicotinamide riboside and nicotinic acid riboside.
    The Journal of biological chemistry, 2009, Dec-11, Volume: 284, Issue:50

    Topics: 5'-Nucleotidase; Gene Knockout Techniques; Glucose; NAD; Niacin; Niacinamide; Nicotinamide Mononucleotide; Pyridinium Compounds; Ribonucleosides; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Vitamins

2009
The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity.
    Cell metabolism, 2012, Jun-06, Volume: 15, Issue:6

    Topics: Acetylation; Adipose Tissue, Brown; Animals; Brain; Diet, High-Fat; Dietary Supplements; Electron Transport Complex I; Energy Metabolism; HEK293 Cells; Humans; Liver; Male; Mice; Mice, Inbred C57BL; Mitochondria; Muscle, Skeletal; NAD; Niacinamide; Obesity; Organ Specificity; Oxidation-Reduction; Oxygen Consumption; Protein Processing, Post-Translational; Pyridinium Compounds; Receptors, G-Protein-Coupled; Receptors, Nicotinic; Sirtuin 1; Sirtuin 3; Superoxide Dismutase; Weight Gain

2012
Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3.
    EMBO molecular medicine, 2014, Volume: 6, Issue:6

    Topics: Adipose Tissue, Brown; Animals; Energy Metabolism; Forkhead Box Protein O1; Forkhead Transcription Factors; Lipid Metabolism; Liver; Male; Mice; Mice, Inbred C57BL; Mitochondria; Mitochondrial Myopathies; Muscle, Skeletal; NAD; Niacinamide; Pyridinium Compounds; Sirtuin 1; Unfolded Protein Response; Vitamin B Complex

2014
YCL047C/POF1 is a novel nicotinamide mononucleotide adenylyltransferase (NMNAT) in Saccharomyces cerevisiae.
    The Journal of biological chemistry, 2014, May-30, Volume: 289, Issue:22

    Topics: Amino Acid Sequence; Homeostasis; Molecular Sequence Data; NAD; Niacinamide; Nicotinamide-Nucleotide Adenylyltransferase; Pyridinium Compounds; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins

2014
NAD(+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease.
    Cell metabolism, 2014, Jun-03, Volume: 19, Issue:6

    Topics: Animals; Dietary Supplements; Disease Models, Animal; Electron Transport Complex IV; Energy Metabolism; Enzyme Activation; Gene Expression; Mice; Mice, Knockout; Mitochondria; Mitochondrial Diseases; Molecular Chaperones; NAD; Niacinamide; Oxidative Phosphorylation; Phenanthrenes; Phenotype; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases; Pyridinium Compounds; Sirtuin 1

2014
Activation of SIRT3 by the NAD⁺ precursor nicotinamide riboside protects from noise-induced hearing loss.
    Cell metabolism, 2014, Dec-02, Volume: 20, Issue:6

    Topics: Animals; Female; Hearing Loss, Noise-Induced; Male; Mice; NAD; Niacinamide; Pyridinium Compounds; Sirtuin 3

2014
Reversing neurodegenerative hearing loss.
    Lab animal, 2015, Volume: 44, Issue:1

    Topics: Animals; Disease Models, Animal; Hearing Loss; Humans; Mice; Mice, Knockout; NAD; Neurodegenerative Diseases; Niacinamide; Pyridinium Compounds; Sirtuin 3

2015
Pharmacological NAD-Boosting Strategies Improve Mitochondrial Homeostasis in Human Complex I-Mutant Fibroblasts.
    Molecular pharmacology, 2015, Volume: 87, Issue:6

    Topics: Energy Metabolism; Fibroblasts; Homeostasis; Humans; Infant; Leukoencephalopathies; Membrane Potential, Mitochondrial; Mitochondria; Mutation; NAD; NADH Dehydrogenase; Niacinamide; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors; Pyridinium Compounds; Signal Transduction

2015
Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells.
    The Journal of biological chemistry, 2015, Nov-06, Volume: 290, Issue:45

    Topics: 5'-Nucleotidase; Cytokines; HEK293 Cells; Hep G2 Cells; Humans; Kinetics; Magnetic Resonance Spectroscopy; Metabolic Networks and Pathways; NAD; Niacin; Niacinamide; Nicotinamide Phosphoribosyltransferase; Pentosyltransferases; Phosphorylation; Pyridinium Compounds; Recombinant Proteins; Ribonucleosides; Signal Transduction; Substrate Specificity

2015
Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice.
    Hepatology (Baltimore, Md.), 2016, Volume: 63, Issue:4

    Topics: Analysis of Variance; Animals; Area Under Curve; Biopsy, Needle; Diet, High-Fat; Disease Models, Animal; Fatty Liver; Immunohistochemistry; Lipid Metabolism; Male; Mice; Mice, Inbred C57BL; Mitochondria; NAD; Niacinamide; Pyridinium Compounds; Random Allocation; Sensitivity and Specificity; Treatment Outcome; Unfolded Protein Response

2016
Antitumor effect of combined NAMPT and CD73 inhibition in an ovarian cancer model.
    Oncotarget, 2016, Jan-19, Volume: 7, Issue:3

    Topics: 5'-Nucleotidase; Acrylamides; Adenosine Triphosphate; Animals; Cell Line, Tumor; Cytokines; Female; GPI-Linked Proteins; Humans; Mice; Mice, Nude; NAD; Niacinamide; Nicotinamide Mononucleotide; Nicotinamide Phosphoribosyltransferase; Ovarian Neoplasms; Piperidines; Pyridinium Compounds; RNA Interference; RNA, Small Interfering

2016
Nicotinamide Riboside Is a Major NAD+ Precursor Vitamin in Cow Milk.
    The Journal of nutrition, 2016, Volume: 146, Issue:5

    Topics: Animals; Cattle; Commerce; Female; Food Microbiology; Food, Organic; Magnetic Resonance Spectroscopy; Milk; Milk Proteins; NAD; Niacin; Niacinamide; Provitamins; Pyridinium Compounds; Staphylococcus aureus; Tandem Mass Spectrometry; Vitamin B Complex

2016
NAD⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice.
    Science (New York, N.Y.), 2016, Jun-17, Volume: 352, Issue:6292

    Topics: Animals; Cellular Reprogramming; Cellular Senescence; Disease Models, Animal; Longevity; Melanocytes; Mice; Mice, Inbred C57BL; Mice, Inbred mdx; Mitochondria; Muscular Dystrophies; Myoblasts, Skeletal; NAD; Neural Stem Cells; Niacinamide; Oxidative Stress; Prohibitins; Pyridinium Compounds; Repressor Proteins; Unfolded Protein Response

2016
CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism.
    Cell metabolism, 2016, 06-14, Volume: 23, Issue:6

    Topics: ADP-ribosyl Cyclase 1; Aging; Animals; Diet, High-Fat; Mammals; Mice, Inbred C57BL; Mice, Knockout; Mitochondria; NAD; NAD+ Nucleosidase; Niacinamide; Organ Specificity; Pyridinium Compounds; RNA, Messenger; Sirtuin 3

2016
Auxotrophic Actinobacillus pleurpneumoniae grows in multispecies biofilms without the need for nicotinamide-adenine dinucleotide (NAD) supplementation.
    BMC microbiology, 2016, 06-27, Volume: 16, Issue:1

    Topics: Acetylglucosamine; Actinobacillus Infections; Actinobacillus pleuropneumoniae; Animals; Biofilms; Bordetella bronchiseptica; Culture Media; Deoxyribonuclease I; Endopeptidase K; Escherichia coli; In Situ Hybridization, Fluorescence; Microscopy, Confocal; NAD; Niacinamide; Nicotinamide Mononucleotide; Pasteurella multocida; Pyridines; Pyridinium Compounds; Species Specificity; Staphylococcus aureus; Stem Cells; Streptococcus suis; Swine; Swine Diseases

2016
The NAD(+) precursor nicotinamide riboside decreases exercise performance in rats.
    Journal of the International Society of Sports Nutrition, 2016, Volume: 13

    Topics: Animals; Dietary Supplements; Male; Muscle, Skeletal; NAD; Niacinamide; Oxidation-Reduction; Phosphorylation; Physical Conditioning, Animal; Pyridinium Compounds; Rats; Rats, Wistar

2016
Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle.
    Cell metabolism, 2016, 08-09, Volume: 24, Issue:2

    Topics: Administration, Oral; Aging; Animals; Biological Availability; Energy Metabolism; Glucose; Homeostasis; Inflammation; Mice, Inbred C57BL; Mice, Knockout; Mitochondria; Muscle Strength; Muscle, Skeletal; NAD; Necrosis; Niacinamide; Nicotinamide Phosphoribosyltransferase; Organ Size; Physical Conditioning, Animal; Pyridinium Compounds; Transcription, Genetic

2016
Nicotinamide riboside is uniquely and orally bioavailable in mice and humans.
    Nature communications, 2016, 10-10, Volume: 7

    Topics: Administration, Oral; Animals; Biological Availability; Biomarkers; Humans; Leukocytes, Mononuclear; Liver; Male; Metabolome; Mice, Inbred C57BL; Middle Aged; NAD; Niacinamide; Pyridinium Compounds; Vitamins

2016
NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells.
    Nature communications, 2016, 10-11, Volume: 7

    Topics: Animals; Hep G2 Cells; Hepatocytes; Humans; Injections, Intraperitoneal; Mammals; Mice, Knockout; NAD; Niacinamide; Nicotinamide Mononucleotide; Phosphotransferases (Alcohol Group Acceptor); Pyridinium Compounds

2016
Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration.
    Hepatology (Baltimore, Md.), 2017, Volume: 65, Issue:2

    Topics: Animals; Disease Models, Animal; Fluorescent Antibody Technique; Hepatectomy; Immunoblotting; Immunohistochemistry; Liver; Liver Regeneration; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; NAD; Niacinamide; Pyridinium Compounds; Random Allocation; Sensitivity and Specificity

2017
Simultaneous quantitation of nicotinamide riboside, nicotinamide mononucleotide and nicotinamide adenine dinucleotide in milk by a novel enzyme-coupled assay.
    Food chemistry, 2017, Apr-15, Volume: 221

    Topics: Animals; Cattle; Enzyme Assays; Equidae; Fluorometry; Food Analysis; Food Handling; Humans; Milk; Milk, Human; NAD; Niacinamide; Nicotinamide Mononucleotide; Pasteurization; Pyridinium Compounds

2017
Nicotinamide riboside, a form of vitamin B3 and NAD+ precursor, relieves the nociceptive and aversive dimensions of paclitaxel-induced peripheral neuropathy in female rats.
    Pain, 2017, Volume: 158, Issue:5

    Topics: Animals; Antineoplastic Agents, Phytogenic; Disease Models, Animal; Eosinophils; Escape Reaction; Female; Hyperalgesia; Leukocyte Count; Locomotion; NAD; Neutrophils; Niacinamide; Nociception; Paclitaxel; Pain Measurement; Peripheral Nervous System Diseases; Pyridinium Compounds; Rats; Rats, Sprague-Dawley; Statistics, Nonparametric; Time Factors

2017
Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity.
    Nature, 2017, 12-14, Volume: 552, Issue:7684

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Caenorhabditis elegans; Disease Models, Animal; Homeostasis; Humans; Male; Memory; Mice; Mice, Transgenic; Mitochondria; Mitophagy; NAD; Niacinamide; Oxidative Phosphorylation; Protein Aggregation, Pathological; Protein Biosynthesis; Proteostasis; Pyridinium Compounds; Unfolded Protein Response

2017
Nicotinamide Riboside Preserves Cardiac Function in a Mouse Model of Dilated Cardiomyopathy.
    Circulation, 2018, 05-22, Volume: 137, Issue:21

    Topics: Acrylamides; AMP-Activated Protein Kinases; Animals; Cardiomyopathy, Dilated; Citric Acid; Cytokines; Dietary Supplements; Disease Models, Animal; Gene Expression Profiling; Heart Failure; Metabolome; Mice; Mice, Transgenic; Myocytes, Cardiac; NAD; Niacinamide; Nicotinamide Phosphoribosyltransferase; Phosphotransferases (Alcohol Group Acceptor); Piperidines; PPAR alpha; Pyridinium Compounds; Rats; Serum Response Factor

2018
Synthesis of β-Nicotinamide Riboside Using an Efficient Two-Step Methodology.
    Current protocols in nucleic acid chemistry, 2017, 12-24, Volume: 71

    Topics: Animals; Chromatography, High Pressure Liquid; NAD; Niacinamide; Nicotinic Acids; Proton Magnetic Resonance Spectroscopy; Pyridinium Compounds; Stereoisomerism

2017
Overexpression of NRK1 ameliorates diet- and age-induced hepatic steatosis and insulin resistance.
    Biochemical and biophysical research communications, 2018, 06-02, Volume: 500, Issue:2

    Topics: Aging; Animals; Diet, High-Fat; Fatty Liver; HEK293 Cells; Humans; Insulin Resistance; Lipid Metabolism; Liver; Male; Mice; Mice, Inbred C57BL; NAD; Niacinamide; NIH 3T3 Cells; Phosphotransferases (Alcohol Group Acceptor); Pyridinium Compounds; Triglycerides

2018
Nicotinamide riboside attenuates alcohol induced liver injuries via activation of SirT1/PGC-1α/mitochondrial biosynthesis pathway.
    Redox biology, 2018, Volume: 17

    Topics: Animals; Chemical and Drug Induced Liver Injury; Ethanol; Gene Expression Regulation; Hep G2 Cells; Humans; Lipid Metabolism; Mice; Mitochondria; NAD; Niacinamide; Oxidative Stress; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Pyridinium Compounds; RNA, Long Noncoding

2018
Raising NAD in Heart Failure: Time to Translate?
    Circulation, 2018, 05-22, Volume: 137, Issue:21

    Topics: Animals; Cardiomyopathy, Dilated; Heart Failure; Mice; NAD; Niacinamide; Pyridinium Compounds

2018
The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC and Fly Models of Parkinson's Disease.
    Cell reports, 2018, 06-05, Volume: 23, Issue:10

    Topics: Animals; Autophagy; Disease Models, Animal; Dopaminergic Neurons; Drosophila melanogaster; Endoplasmic Reticulum Stress; Glucosylceramidase; Humans; Induced Pluripotent Stem Cells; Mitochondria; Mitochondrial Dynamics; Motor Activity; NAD; Neurons; Niacinamide; Parkinson Disease; Pyridinium Compounds; Unfolded Protein Response

2018
Nicotinamide adenine dinucleotide is transported into mammalian mitochondria.
    eLife, 2018, 06-12, Volume: 7

    Topics: Animals; Biological Transport; Cell Line; HEK293 Cells; HL-60 Cells; Humans; Male; Mice; Mice, Inbred C57BL; Mitochondria, Liver; Mitochondria, Muscle; Myoblasts; NAD; Niacinamide; Nicotinamide Mononucleotide; Pyridinium Compounds

2018
Nicotinamide riboside supplementation dysregulates redox and energy metabolism in rats: Implications for exercise performance.
    Experimental physiology, 2018, Volume: 103, Issue:10

    Topics: Animals; Catalase; Energy Metabolism; Erythrocytes; Glutathione Peroxidase; Glutathione Reductase; Male; NAD; Niacinamide; Oxidation-Reduction; Physical Conditioning, Animal; Pyridinium Compounds; Rats; Rats, Wistar

2018
Pharmacological bypass of NAD
    Proceedings of the National Academy of Sciences of the United States of America, 2018, 10-16, Volume: 115, Issue:42

    Topics: Acrylamides; Animals; Antineoplastic Agents, Phytogenic; Drug Combinations; Francisella tularensis; Ganglia, Spinal; NAD; Nerve Degeneration; Neurons; Niacinamide; Nicotinamide Mononucleotide; Nicotinamide Phosphoribosyltransferase; Piperidines; Pyridinium Compounds; Vincristine

2018
Maternal Nicotinamide Riboside Enhances Postpartum Weight Loss, Juvenile Offspring Development, and Neurogenesis of Adult Offspring.
    Cell reports, 2019, 01-22, Volume: 26, Issue:4

    Topics: Animals; Female; Lactation; Liver; Maternal Exposure; Mice; NAD; Neurogenesis; Niacinamide; Postpartum Period; Pregnancy; Prenatal Exposure Delayed Effects; Pyridinium Compounds; Weight Loss

2019
NR Supplementation During Lactation: Benefiting Mother and Child.
    Trends in endocrinology and metabolism: TEM, 2019, Volume: 30, Issue:4

    Topics: Adolescent; Adult Children; Child; Dietary Supplements; Female; Humans; Lactation; Mothers; NAD; Neurogenesis; Niacinamide; Postpartum Period; Pyridinium Compounds; Weight Loss

2019
The NAD-Booster Nicotinamide Riboside Potently Stimulates Hematopoiesis through Increased Mitochondrial Clearance.
    Cell stem cell, 2019, 03-07, Volume: 24, Issue:3

    Topics: Animals; Cells, Cultured; Hematopoiesis; Hematopoietic Stem Cells; Humans; Mice; Mice, Inbred C57BL; Mice, Knockout; Mitochondria; NAD; Niacinamide; Pyridinium Compounds

2019
NAD
    Aging cell, 2019, Volume: 18, Issue:3

    Topics: Adult Stem Cells; Aging; Animals; Carbazoles; Cell Proliferation; Cells, Cultured; Dextran Sulfate; Intestinal Mucosa; Male; Mice; Mice, Inbred C57BL; NAD; Niacinamide; Pyridinium Compounds; Rejuvenation; Sirolimus

2019
NAD metabolites interfere with proliferation and functional properties of THP-1 cells.
    Innate immunity, 2019, Volume: 25, Issue:5

    Topics: Antigens, Differentiation; Cell Cycle; Cell Proliferation; Chemokines; Humans; Lipopolysaccharides; Monocytes; NAD; Niacinamide; Poly (ADP-Ribose) Polymerase-1; Pyridinium Compounds; Reactive Oxygen Species; Sirtuin 1; THP-1 Cells; Tumor Necrosis Factor-alpha

2019
Nicotinamide riboside, an NAD+ precursor, attenuates the development of liver fibrosis in a diet-induced mouse model of liver fibrosis.
    Biochimica et biophysica acta. Molecular basis of disease, 2019, 09-01, Volume: 1865, Issue:9

    Topics: Animals; Body Weight; Collagen; Diet, High-Fat; Dietary Supplements; Disease Models, Animal; Energy Metabolism; Hepatic Stellate Cells; Humans; Liver; Mice; Mice, Inbred C57BL; Muscle, Skeletal; NAD; Niacinamide; Non-alcoholic Fatty Liver Disease; Pyridinium Compounds

2019
Nicotinamide riboside promotes autolysosome clearance in preventing doxorubicin-induced cardiotoxicity.
    Clinical science (London, England : 1979), 2019, 07-15, Volume: 133, Issue:13

    Topics: Animals; Antioxidants; Autophagy; Cardiotoxicity; Cells, Cultured; Cytoprotection; Disease Models, Animal; Doxorubicin; Heart Diseases; Hydrogen-Ion Concentration; Lysosomes; Male; Mice, Inbred C57BL; Mice, Transgenic; Myocytes, Cardiac; NAD; Niacinamide; Oxidative Stress; Pyridinium Compounds; Sirtuin 1

2019
NAD
    European journal of nutrition, 2020, Volume: 59, Issue:6

    Topics: Aerobiosis; Animals; Cell Respiration; Male; Mice; Mice, Inbred C57BL; Mitochondria; Muscle, Skeletal; NAD; Niacinamide; Pyridinium Compounds

2020
Endogenous nicotinamide riboside metabolism protects against diet-induced liver damage.
    Nature communications, 2019, 09-20, Volume: 10, Issue:1

    Topics: Animals; Blood Glucose; Diet, High-Fat; Disease Models, Animal; DNA Damage; Gene Knockout Techniques; Genetic Predisposition to Disease; Glucose Intolerance; Hepatocytes; Insulin Resistance; Lipid Metabolism; Liver; Liver Diseases; Male; Metabolic Syndrome; Mice; Mice, Inbred C57BL; Mice, Knockout; NAD; Niacinamide; Phosphotransferases (Alcohol Group Acceptor); Protective Agents; Pyridinium Compounds

2019
The senotherapeutic nicotinamide riboside raises platelet nicotinamide adenine dinucleotide levels but cannot prevent storage lesion.
    Transfusion, 2020, Volume: 60, Issue:1

    Topics: Apoptosis; bcl-2 Homologous Antagonist-Killer Protein; Blood Platelets; Blood Preservation; Caspase 3; Cytochromes c; Humans; NAD; Niacinamide; Platelet Aggregation; Pyridinium Compounds

2020
A reduced form of nicotinamide riboside defines a new path for NAD
    Molecular metabolism, 2019, Volume: 30

    Topics: Animals; Cell Line; Male; Mice; NAD; Niacinamide; Phosphotransferases (Alcohol Group Acceptor); Pyridinium Compounds; Rats

2019
Bacteria Boost Mammalian Host NAD Metabolism by Engaging the Deamidated Biosynthesis Pathway.
    Cell metabolism, 2020, 03-03, Volume: 31, Issue:3

    Topics: Administration, Oral; Amides; Animals; Biosynthetic Pathways; Cell Line, Tumor; Cytokines; Energy Metabolism; Female; Gastrointestinal Microbiome; Humans; Male; Mammals; Metabolome; Mice, Inbred C57BL; Mycoplasma; NAD; Niacinamide; Nicotinamidase; Nicotinamide Mononucleotide; Nicotinamide Phosphoribosyltransferase; Pyridinium Compounds

2020
Deletion of Topoisomerase 1 in excitatory neurons causes genomic instability and early onset neurodegeneration.
    Nature communications, 2020, 04-23, Volume: 11, Issue:1

    Topics: Animals; Apoptosis; Cerebral Cortex; DNA Damage; DNA Topoisomerases, Type I; Genomic Instability; Hippocampus; Inflammation; Mice; Mice, Knockout; Mortality, Premature; Motor Activity; Mutation; NAD; Neurodegenerative Diseases; Neurons; Niacinamide; Poly (ADP-Ribose) Polymerase-1; Pyridinium Compounds

2020
Targeting sirtuin activity with nicotinamide riboside reduces neuroinflammation in a GWI mouse model.
    Neurotoxicology, 2020, Volume: 79

    Topics: Aged; Animals; Anti-Inflammatory Agents; Astrocytes; Behavior, Animal; Brain; Case-Control Studies; Disease Models, Animal; Energy Metabolism; Fatigue; Female; Gulf War; Humans; Male; Mice, Inbred C57BL; Middle Aged; Mitochondria; NAD; Niacinamide; Organelle Biogenesis; Oxidative Stress; Persian Gulf Syndrome; Pilot Projects; Pyridinium Compounds; Sirtuin 1; Veterans Health

2020
Systemic Treatment With Nicotinamide Riboside Is Protective in a Mouse Model of Light-Induced Retinal Degeneration.
    Investigative ophthalmology & visual science, 2020, 08-03, Volume: 61, Issue:10

    Topics: Animals; Disease Models, Animal; Electroretinography; Fluorescent Antibody Technique; Injections, Intraperitoneal; Light; Male; Mice; Mice, Inbred BALB C; NAD; Niacinamide; Photoreceptor Cells, Vertebrate; Pyridinium Compounds; Retina; Retinal Degeneration; Tomography, Optical Coherence

2020
Physical exercise may exert its therapeutic influence on Alzheimer's disease through the reversal of mitochondrial dysfunction via SIRT1-FOXO1/3-PINK1-Parkin-mediated mitophagy.
    Journal of sport and health science, 2021, Volume: 10, Issue:1

    Topics: Adenosine Triphosphate; Alzheimer Disease; Amyloid beta-Peptides; Brain-Derived Neurotrophic Factor; Disease Progression; Exercise; Forkhead Box Protein O1; Humans; Mitochondria; Mitochondrial Diseases; Mitophagy; NAD; Niacinamide; Nicotinamide Mononucleotide; Protein Kinases; Pyridinium Compounds; Reactive Oxygen Species; Sirtuin 1; Ubiquitin-Protein Ligases

2021
Re-equilibration of imbalanced NAD metabolism ameliorates the impact of telomere dysfunction.
    The EMBO journal, 2020, 11-02, Volume: 39, Issue:21

    Topics: ADP-ribosyl Cyclase 1; Animals; Brain; Cell Line; Cellular Senescence; Dyskeratosis Congenita; Female; Fibroblasts; Homeostasis; Humans; Membrane Glycoproteins; Mice; Mice, Knockout; Mitochondria; NAD; Niacinamide; Phenotype; Poly (ADP-Ribose) Polymerase-1; Pyridinium Compounds; Telomerase; Telomere

2020
Coronavirus infection and PARP expression dysregulate the NAD metabolome: An actionable component of innate immunity.
    The Journal of biological chemistry, 2020, 12-25, Volume: 295, Issue:52

    Topics: A549 Cells; Adenosine Diphosphate Ribose; ADP-Ribosylation; Adult; Animals; Cell Line, Tumor; COVID-19; Female; Ferrets; Humans; Immunity, Innate; Male; Metabolome; Mice; Mice, Inbred C57BL; NAD; Niacinamide; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases; Pyridinium Compounds; SARS-CoV-2

2020
A second riboswitch class for the enzyme cofactor NAD
    RNA (New York, N.Y.), 2021, Volume: 27, Issue:1

    Topics: Bacterial Proteins; Base Sequence; Binding Sites; Carrier Proteins; Coenzymes; Computational Biology; Corynebacterium glutamicum; Haemophilus influenzae; Lactobacillus acidophilus; NAD; Niacinamide; Nucleic Acid Conformation; Protein Binding; Pyridinium Compounds; Riboswitch; Shewanella; Streptococcus

2021
Complementary NAD
    Skeletal muscle, 2020, 10-22, Volume: 10, Issue:1

    Topics: ADP-ribosyl Cyclase 1; Animals; Dystrophin; Enzyme Inhibitors; Male; Membrane Glycoproteins; Metabolome; Mice; Mice, Inbred C57BL; Mice, Inbred mdx; Muscle Contraction; Muscle, Skeletal; Muscular Dystrophy, Duchenne; NAD; Niacinamide; Pyridinium Compounds

2020
Nicotinamide Riboside and Pterostilbene Cooperatively Delay Motor Neuron Failure in ALS SOD1
    Molecular neurobiology, 2021, Volume: 58, Issue:4

    Topics: Acetylcysteine; Amyotrophic Lateral Sclerosis; Animals; Antioxidants; Apoptosis; Cytokines; Female; Male; Metabolome; Mice, Inbred C57BL; Mice, Transgenic; Mitochondria; Motor Activity; Motor Neurons; Mutation; NAD; Nerve Degeneration; NF-E2-Related Factor 2; Niacinamide; Oxidation-Reduction; Pyridinium Compounds; Reactive Oxygen Species; Sirtuin 1; Sirtuin 3; Spinal Cord; Stilbenes; Superoxide Dismutase-1; Survival Analysis

2021
Nicotinamide riboside supplementation does not alter whole-body or skeletal muscle metabolic responses to a single bout of endurance exercise.
    The Journal of physiology, 2021, Volume: 599, Issue:5

    Topics: Dietary Supplements; Exercise; Male; Muscle, Skeletal; NAD; Niacinamide; Pyridinium Compounds

2021
Equilibrative Nucleoside Transporters Mediate the Import of Nicotinamide Riboside and Nicotinic Acid Riboside into Human Cells.
    International journal of molecular sciences, 2021, Jan-30, Volume: 22, Issue:3

    Topics: Aging; Cytosol; Equilibrative Nucleoside Transport Proteins; HEK293 Cells; Humans; Magnetic Resonance Spectroscopy; Membrane Transport Proteins; Metabolomics; NAD; Niacinamide; Nicotinamide Mononucleotide; Phosphorylation; Phosphotransferases (Alcohol Group Acceptor); Pyridinium Compounds; Recombinant Proteins; Ribonucleosides

2021
NAD
    Aging cell, 2021, Volume: 20, Issue:4

    Topics: Animals; Ataxia Telangiectasia; Ataxia Telangiectasia Mutated Proteins; Case-Control Studies; Cell Line, Tumor; Dietary Supplements; Disease Models, Animal; Female; Fibroblasts; Humans; Male; Membrane Proteins; Mice; Mice, Knockout; Mitochondria; Mitophagy; NAD; Neurons; Niacinamide; Pyridinium Compounds; Rats; Rats, Sprague-Dawley; Senescence-Associated Secretory Phenotype; Signal Transduction; Transfection; Treatment Outcome

2021
Inhibition of CD38 and supplementation of nicotinamide riboside ameliorate lipopolysaccharide-induced microglial and astrocytic neuroinflammation by increasing NAD
    Journal of neurochemistry, 2021, Volume: 158, Issue:2

    Topics: ADP-ribosyl Cyclase 1; Animals; Apigenin; Astrocytes; Chemokines; Cytokines; Gene Deletion; Hippocampus; Inflammation; Injections, Intraventricular; Lipopolysaccharides; Macrophage Activation; Male; Membrane Glycoproteins; Mice; Mice, Inbred ICR; Mice, Knockout; Microglia; NAD; Nerve Degeneration; NF-kappa B; Niacinamide; Pyridinium Compounds

2021
NAD
    Circulation research, 2021, 05-28, Volume: 128, Issue:11

    Topics: Acetylation; Acyl-CoA Dehydrogenase; Animals; Disease Models, Animal; Down-Regulation; Fatty Acids; Heart Failure, Diastolic; Humans; Ketone Oxidoreductases; Male; Mice; Mice, Inbred C57BL; Mitochondria, Heart; Mitochondrial Myopathies; NAD; Niacinamide; Oxidation-Reduction; Oxygen Consumption; Pyridinium Compounds; Sirtuin 3

2021
Nicotinamide riboside attenuates age-associated metabolic and functional changes in hematopoietic stem cells.
    Nature communications, 2021, 05-11, Volume: 12, Issue:1

    Topics: Age Factors; Aging; Animals; Bone Marrow Cells; Cells, Cultured; Gene Expression Profiling; Gene Expression Regulation; Hematopoietic Stem Cells; Mice, Inbred C57BL; Mice, Transgenic; Mitochondria; Models, Biological; NAD; Niacinamide; Oxidative Phosphorylation; Pyridinium Compounds

2021
Effect of NAD+ boosting on kidney ischemia-reperfusion injury.
    PloS one, 2021, Volume: 16, Issue:6

    Topics: Acute Kidney Injury; Animals; Autophagy; Disease Progression; Fibrosis; Glucuronidase; Kidney; Klotho Proteins; Male; Mitochondria; NAD; Niacinamide; Protective Agents; Pyridinium Compounds; Random Allocation; Rats; Rats, Wistar; Renal Insufficiency, Chronic; Reperfusion Injury; Signal Transduction; Sirtuin 1; Treatment Outcome

2021
Instability in NAD
    eLife, 2021, 08-03, Volume: 10

    Topics: Animals; DNA Damage; DNA Repair; DNA, Mitochondrial; Heart; Heart Diseases; HeLa Cells; Humans; Mice; Mitochondria; Myocardium; NAD; Niacinamide; Pyridinium Compounds; Sirtuins

2021
Enzymatic and Chemical Syntheses of Vacor Analogs of Nicotinamide Riboside, NMN and NAD.
    Biomolecules, 2021, 07-16, Volume: 11, Issue:7

    Topics: ADP-ribosyl Cyclase; Animals; Antineoplastic Agents; Aplysia; Cell Proliferation; HEK293 Cells; Humans; NAD; Niacinamide; Phenylurea Compounds; Phosphotransferases (Alcohol Group Acceptor); Pyridinium Compounds

2021
Nicotinamide riboside relieves the severity of experimental necrotizing enterocolitis by regulating endothelial function via eNOS deacetylation.
    Free radical biology & medicine, 2022, 05-01, Volume: 184

    Topics: Animals; Disease Models, Animal; Endothelial Cells; Enterocolitis, Necrotizing; Mice; Microcirculation; NAD; Niacinamide; Nitric Oxide Synthase Type III; Pyridinium Compounds; Sirtuin 1; Tumor Necrosis Factor-alpha

2022
Acute Treatment with Nicotinamide Riboside Chloride Reduces Hippocampal Damage and Preserves the Cognitive Function of Mice with Ischemic Injury.
    Neurochemical research, 2022, Volume: 47, Issue:8

    Topics: Animals; Chlorides; Cognition; Hippocampus; Infarction, Middle Cerebral Artery; Mice; NAD; Niacinamide; Pyridinium Compounds

2022
A reduced form of nicotinamide riboside protects the cochlea against aminoglycoside-induced ototoxicity by SIRT1 activation.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2022, Volume: 150

    Topics: 14-3-3 Proteins; Aminoglycosides; Animals; Anti-Bacterial Agents; Cochlea; Hearing Loss; Kanamycin; Mice; NAD; Niacinamide; Ototoxicity; Pyridinium Compounds; Reactive Oxygen Species; Resveratrol; Sirtuin 1

2022
Nicotinamide Riboside Supplementation to Suckling Male Mice Improves Lipid and Energy Metabolism in Skeletal Muscle and Liver in Adulthood.
    Nutrients, 2022, May-28, Volume: 14, Issue:11

    Topics: Animals; Diet, High-Fat; Dietary Supplements; Energy Metabolism; Lipid Metabolism; Lipids; Liver; Male; Mice; Mice, Inbred C57BL; Muscle, Skeletal; NAD; Niacinamide; Pyridinium Compounds; Triglycerides

2022
Nicotinamide riboside and caffeine partially restore diminished NAD availability but not altered energy metabolism in Alzheimer's disease.
    Aging cell, 2022, Volume: 21, Issue:7

    Topics: Alzheimer Disease; Caffeine; Energy Metabolism; Humans; NAD; Niacinamide; Pyridinium Compounds

2022
Nicotinamide Riboside and Dihydronicotinic Acid Riboside Synergistically Increase Intracellular NAD
    Nutrients, 2022, Jul-01, Volume: 14, Issue:13

    Topics: Animals; Mammals; Mice; NAD; Niacinamide; Pyridinium Compounds

2022
Nicotinamide riboside alleviates exercise intolerance in ANT1-deficient mice.
    Molecular metabolism, 2022, Volume: 64

    Topics: Adenine Nucleotide Translocator 1; Animals; Mice; Mitochondrial Myopathies; Muscle Weakness; NAD; Niacinamide; Physical Conditioning, Animal; Protein Isoforms; Pyridinium Compounds

2022
Purine nucleoside phosphorylase controls nicotinamide riboside metabolism in mammalian cells.
    The Journal of biological chemistry, 2022, Volume: 298, Issue:12

    Topics: Animals; Humans; Mammals; Mice; NAD; Niacinamide; Purine-Nucleoside Phosphorylase; Pyridinium Compounds

2022
Nicotinamide riboside supplementation ameliorated post-ovulatory oocyte quality decline.
    Reproduction (Cambridge, England), 2023, 01-01, Volume: 165, Issue:1

    Topics: Animals; Dietary Supplements; Humans; Mice; NAD; Oocytes; Reactive Oxygen Species

2023
Intravenous Nicotinamide Riboside Administration Has a Cardioprotective Effect in Chronic Doxorubicin-Induced Cardiomyopathy.
    International journal of molecular sciences, 2022, Oct-28, Volume: 23, Issue:21

    Topics: Animals; Cardiomyopathies; Doxorubicin; Male; NAD; Niacinamide; Pyridinium Compounds; Rats; Rats, Wistar

2022
A bioluminescent-based probe for in vivo non-invasive monitoring of nicotinamide riboside uptake reveals a link between metastasis and NAD
    Biosensors & bioelectronics, 2023, Jan-15, Volume: 220

    Topics: Animals; Biosensing Techniques; Humans; NAD; Niacinamide; Pyridinium Compounds; Triple Negative Breast Neoplasms

2023
Nicotinamide riboside rescues dysregulated glycolysis and fatty acid β-oxidation in a human hepatic cell model of citrin deficiency.
    Human molecular genetics, 2023, 05-18, Volume: 32, Issue:11

    Topics: Aspartic Acid; Citrullinemia; Fatty Acids; Glycolysis; Hepatocytes; Humans; Hyperammonemia; Malates; Mitochondrial Membrane Transport Proteins; NAD; Urea

2023
Systematic engineering of Escherichia coli for efficient production of nicotinamide riboside from nicotinamide and 3-cyanopyridine.
    Bioresource technology, 2023, Volume: 377

    Topics: Escherichia coli; NAD; Niacinamide; Pyridinium Compounds

2023
SUPPLEMENTATION WITH NICOTINAMIDE RIBOSIDE ATTENUATES T CELL EXHAUSTION AND IMPROVES SURVIVAL IN SEPSIS.
    Shock (Augusta, Ga.), 2023, 08-01, Volume: 60, Issue:2

    Topics: Animals; Dietary Supplements; Mice; NAD; Sepsis; Sirtuin 1; T-Cell Exhaustion

2023
A riboside hydrolase that salvages both nucleobases and nicotinamide in the auxotrophic parasite Trichomonas vaginalis.
    The Journal of biological chemistry, 2023, Volume: 299, Issue:9

    Topics: Animals; Crystallography, X-Ray; Hydrolases; Models, Molecular; NAD; Niacinamide; Parasites; Protein Binding; Protein Structure, Tertiary; Substrate Specificity; Trichomonas vaginalis

2023