Page last updated: 2024-08-17

nad and 2,3-butylene glycol

nad has been researched along with 2,3-butylene glycol in 24 studies

Research

Studies (24)

TimeframeStudies, this research(%)All Research%
pre-19902 (8.33)18.7374
1990's1 (4.17)18.2507
2000's2 (8.33)29.6817
2010's15 (62.50)24.3611
2020's4 (16.67)2.80

Authors

AuthorsStudies
Jones, AW; Nilsson, L1
Gander, JE; Langston-Unkefer, PJ1
Felver, ME; Huang, MT; Lakshmanan, MR; Veech, RL; Wolf, S1
Corrieu, G; El Attar, A; Monnet, C1
Biosca, JA; Fernández, MR; González, E; Larroy, C; Parés, X1
Biosca, JA; Calam, E; Dequin, S; Fernández, MR; González, E; Marco, D; Parés, X; Sumoy, L1
Gaspar, P; Gasson, MJ; Neves, AR; Santos, H; Shearman, CA1
Camarasa, C; Celton, M; Dequin, S; Fromion, V; Goelzer, A1
Tan, T; Wang, G; Wang, Z; Wu, Z1
Guan, X; Hu, K; Li, Y; Lin, H; Sha, L; Shen, Y; Sun, S; Xu, Q; Zhan, S; Zhang, L1
Gao, C; Li, L; Ma, C; Tao, F; Wang, Y; Xu, P1
Chen, J; Gao, X; Li, S; Liu, L; Xu, N1
Chen, T; Fu, J; Liu, W; Shi, T; Tang, YJ; Wang, G; Wang, Z; Zhao, X1
Cui, YL; Fu, SL; Gao, LR; Gong, H; Jiang, X; Zhou, JJ; Zhu, CQ1
Cheng, JS; Dai, JJ; Jiang, T; Liang, YQ; Yuan, YJ1
Bao, T; Rao, Z; Xu, Z; Yang, S; Yang, T; Zhang, R; Zhang, X; Zhao, X1
Huang, M; Shao, J; Song, Q; Ying, X; Yu, M1
Bao, T; Rao, Z; Yang, S; Yang, T; Zhang, X; Zhao, X1
Cao, C; Ding, G; Gao, J; Peng, Y; Xu, H; Xu, Y; Xue, F; Zhang, L1
Liang, K; Shen, CR1
Han, JH; Jung, HM; Oh, MK1
Bae, SJ; Hahn, JS; Jin, H; Kim, BG; Kim, J; Kim, S; Park, HJ1
Foulquié-Moreno, MR; Huo, G; Thevelein, JM1
Ford, K; Tefft, NM; TerAvest, MA1

Other Studies

24 other study(ies) available for nad and 2,3-butylene glycol

ArticleYear
2,3-Butanediol: a potential interfering substance in the assay of ethylene glycol by an enzymatic method.
    Clinica chimica acta; international journal of clinical chemistry, 1992, Jun-30, Volume: 208, Issue:3

    Topics: Butylene Glycols; Enterobacter; Ethylene Glycol; Ethylene Glycols; Humans; NAD; Spectrophotometry; Sugar Alcohol Dehydrogenases

1992
Occurrence of multiple forms of alcohol dehydrogenase in Penicillium supplemented with 2,3-butanediol.
    Archives of biochemistry and biophysics, 1984, Volume: 233, Issue:2

    Topics: Alcohol Dehydrogenase; Alcohol Oxidoreductases; Butylene Glycols; Catalysis; Chemical Phenomena; Chemistry; Ethanol; Fermentation; Kinetics; Molecular Weight; NAD; Penicillium; Stereoisomerism; Substrate Specificity

1984
Control of a secondary pathway of ethanol metabolism by differences in redox state: a story of the failure to arrest the Krebs cycle for drunkenness.
    Current topics in cellular regulation, 1981, Volume: 18

    Topics: Adenosine Diphosphate; Adenosine Triphosphate; Alcohol Drinking; Alcohol Oxidoreductases; Alcoholism; Animals; Brain; Butylene Glycols; Citric Acid Cycle; Disulfiram; Ethanol; Humans; Liver; Male; NAD; Oxidation-Reduction; Rats; Testis

1981
Metabolism of lactose and citrate by mutants of Lactococcus lactis producing excess carbon dioxide.
    The Journal of dairy research, 2000, Volume: 67, Issue:4

    Topics: Acetates; Acetoin; Butylene Glycols; Carbon Dioxide; Cheese; Citric Acid; DNA, Ribosomal; Ethanol; Formates; L-Lactate Dehydrogenase; Lactates; Lactococcus lactis; Lactose; Mutation; NAD; RNA, Ribosomal, 16S

2000
Characterization and functional role of Saccharomyces cerevisiae 2,3-butanediol dehydrogenase.
    Chemico-biological interactions, 2001, Jan-30, Volume: 130-132, Issue:1-3

    Topics: Acetoin; Alcohol Oxidoreductases; Amino Acid Motifs; Amino Acid Sequence; Butylene Glycols; Cloning, Molecular; Conserved Sequence; Enzyme Stability; Gene Targeting; Genes, Fungal; Hydrogen-Ion Concentration; Kinetics; NAD; Saccharomyces cerevisiae; Substrate Specificity

2001
Role of Saccharomyces cerevisiae oxidoreductases Bdh1p and Ara1p in the metabolism of acetoin and 2,3-butanediol.
    Applied and environmental microbiology, 2010, Volume: 76, Issue:3

    Topics: Acetoin; Aerobiosis; Alcohol Oxidoreductases; Amino Acid Substitution; Anaerobiosis; Butylene Glycols; Cloning, Molecular; Conserved Sequence; Fermentation; Gene Deletion; Genetic Engineering; Hydrogen-Ion Concentration; Kinetics; Mutation; NAD; Oxidoreductases; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Sequence Alignment; Substrate Specificity; Sugar Alcohol Dehydrogenases

2010
High yields of 2,3-butanediol and mannitol in Lactococcus lactis through engineering of NAD⁺ cofactor recycling.
    Applied and environmental microbiology, 2011, Volume: 77, Issue:19

    Topics: Butylene Glycols; Ethanol; Fermentation; Gene Deletion; Gene Expression; Gene Expression Profiling; Glucose; L-Lactate Dehydrogenase; Lactococcus lactis; Mannitol; Metabolic Engineering; Metabolic Networks and Pathways; NAD; Promoter Regions, Genetic; Reverse Transcriptase Polymerase Chain Reaction

2011
A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae.
    Metabolic engineering, 2012, Volume: 14, Issue:4

    Topics: Acetates; Acetoin; Alcohol Oxidoreductases; Butylene Glycols; Fermentation; Mitochondria; Models, Biological; NAD; NADP; Oxidation-Reduction; Pentose Phosphate Pathway; Saccharomyces cerevisiae

2012
Improved 1,3-propanediol production by engineering the 2,3-butanediol and formic acid pathways in integrative recombinant Klebsiella pneumoniae.
    Journal of biotechnology, 2013, Oct-20, Volume: 168, Issue:2

    Topics: Alcohol Oxidoreductases; Butylene Glycols; Formate Dehydrogenases; Formates; Fungal Proteins; Gene Silencing; Genes, Bacterial; Genes, Fungal; Klebsiella pneumoniae; Metabolic Engineering; Metabolic Networks and Pathways; Mutagenesis, Insertional; NAD; Pichia; Propylene Glycols; Recombinant Proteins

2013
A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30.
    Applied microbiology and biotechnology, 2014, Volume: 98, Issue:3

    Topics: Acetoin; Alcohol Oxidoreductases; Butylene Glycols; Cations; Cloning, Molecular; Coenzymes; Enzyme Activators; Escherichia coli; Gene Expression; Hydrogen-Ion Concentration; Kinetics; Metals; Molecular Weight; NAD; Recombinant Proteins; Serratia marcescens; Substrate Specificity; Temperature

2014
Engineering of cofactor regeneration enhances (2S,3S)-2,3-butanediol production from diacetyl.
    Scientific reports, 2013, Volume: 3

    Topics: Butylene Glycols; Catalysis; Diacetyl; Escherichia coli; Formate Dehydrogenases; Gene Expression; Genes, Bacterial; Genes, Fungal; NAD

2013
Enhancement of acetoin production in Candida glabrata by in silico-aided metabolic engineering.
    Microbial cell factories, 2014, Apr-13, Volume: 13, Issue:1

    Topics: Acetoin; Acetolactate Synthase; Butylene Glycols; Candida glabrata; Carbon; Carboxy-Lyases; Ethanol; Metabolic Engineering; Metabolic Networks and Pathways; NAD; Niacin; Plasmids; Promoter Regions, Genetic

2014
NADH plays the vital role for chiral pure D-(-)-2,3-butanediol production in Bacillus subtilis under limited oxygen conditions.
    Biotechnology and bioengineering, 2014, Volume: 111, Issue:10

    Topics: Bacillus subtilis; Butylene Glycols; Industrial Microbiology; Metabolic Engineering; NAD; NADP Transhydrogenases; Oxygen; Stereoisomerism

2014
Utilization of excess NADH in 2,3-butanediol-deficient Klebsiella pneumoniae for 1,3-propanediol production.
    Journal of applied microbiology, 2014, Volume: 117, Issue:3

    Topics: Alcohol Dehydrogenase; Butylene Glycols; Fermentation; Glycerol; Klebsiella pneumoniae; Lactic Acid; Mutation; NAD; Propylene Glycols

2014
Regulation of extracellular oxidoreduction potential enhanced (R,R)-2,3-butanediol production by Paenibacillus polymyxa CJX518.
    Bioresource technology, 2014, Volume: 167

    Topics: Ascorbic Acid; Batch Cell Culture Techniques; Borohydrides; Butylene Glycols; Extracellular Space; Fermentation; Intracellular Space; Molecular Sequence Data; NAD; Oxidation-Reduction; Oxygen; Paenibacillus; Temperature

2014
Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis.
    PloS one, 2014, Volume: 9, Issue:7

    Topics: Acetoin; Alcohol Oxidoreductases; Bacillus subtilis; Biocatalysis; Butylene Glycols; Fermentation; Metabolic Engineering; Multienzyme Complexes; NAD; NADH, NADPH Oxidoreductases; Regeneration

2014
Characterization of a (2R,3R)-2,3-Butanediol Dehydrogenase from Rhodococcus erythropolis WZ010.
    Molecules (Basel, Switzerland), 2015, Apr-20, Volume: 20, Issue:4

    Topics: Alcohol Oxidoreductases; Amino Acid Sequence; Bacterial Proteins; Butylene Glycols; Cloning, Molecular; Diacetyl; Hydrogen-Ion Concentration; Kinetics; Molecular Conformation; Molecular Sequence Data; NAD; Rhodococcus; Substrate Specificity; Temperature

2015
Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis.
    Biotechnology journal, 2015, Volume: 10, Issue:8

    Topics: Acetoin; Bacillus subtilis; Biotechnology; Butylene Glycols; Fermentation; Glucose 1-Dehydrogenase; Glucosephosphate Dehydrogenase; Metabolic Engineering; NAD; NADP

2015
Introduction of the exogenous NADH coenzyme regeneration system and its influence on intracellular metabolic flux of Paenibacillus polymyxa.
    Bioresource technology, 2016, Volume: 201

    Topics: Batch Cell Culture Techniques; Biosynthetic Pathways; Butylene Glycols; Coenzymes; Fermentation; Formate Dehydrogenases; Genes, Bacterial; Genetic Vectors; Intracellular Space; Metabolic Flux Analysis; NAD; Paenibacillus

2016
Engineering cofactor flexibility enhanced 2,3-butanediol production in Escherichia coli.
    Journal of industrial microbiology & biotechnology, 2017, Volume: 44, Issue:12

    Topics: Acetoin; Alcohol Oxidoreductases; Butylene Glycols; Escherichia coli; Fermentation; Klebsiella pneumoniae; Metabolic Engineering; NAD; NADP; Oxidation-Reduction

2017
Improved production of 2,3-butanediol and isobutanol by engineering electron transport chain in Escherichia coli.
    Microbial biotechnology, 2021, Volume: 14, Issue:1

    Topics: Butanols; Butylene Glycols; Electron Transport; Escherichia coli; Metabolic Engineering; NAD

2021
High-yield production of (R)-acetoin in Saccharomyces cerevisiae by deleting genes for NAD(P)H-dependent ketone reductases producing meso-2,3-butanediol and 2,3-dimethylglycerate.
    Metabolic engineering, 2021, Volume: 66

    Topics: Acetoin; Alcohol Oxidoreductases; Butylene Glycols; NAD; Saccharomyces cerevisiae

2021
Development of an industrial yeast strain for efficient production of 2,3-butanediol.
    Microbial cell factories, 2022, Sep-29, Volume: 21, Issue:1

    Topics: Butylene Glycols; Fermentation; Glucose; Glycerol; Metabolic Engineering; NAD; NADH Dehydrogenase; Saccharomyces cerevisiae

2022
NADH dehydrogenases drive inward electron transfer in Shewanella oneidensis MR-1.
    Microbial biotechnology, 2023, Volume: 16, Issue:3

    Topics: Acetoin; Electron Transport; Electrons; NAD; Oxidation-Reduction; Oxidoreductases; Shewanella

2023