nabam and cyromazine

nabam has been researched along with cyromazine* in 2 studies

Other Studies

2 other study(ies) available for nabam and cyromazine

ArticleYear
Juvenile and sublethal effects of selected pesticides on the leafminer parasitoids Hemiptarsenus varicornis and Diglyphus isaea (Hymenoptera: Eulophidae) from Australia.
    Journal of economic entomology, 2005, Volume: 98, Issue:6

    The pest leafminers Liriomyza huidobrensis (Blanchard), Liriomyza sativae (Blanchard), and Liriomyza trifolii (Burgess) (Diptera: Agromyzidae) have spread into South East Asia and Oceania, and they are likely to reach Australia in the near future. Two translaminar pesticides, cyromazine and abamectin, currently provide effective chemical control of these pests, but because parasitoids can play an important role in controlling and preventing leafminer outbreaks, understanding the impact of pesticides on leafminer parasitoids is vital. Here, we tested larval and pupal mortality and sublethal effects of abamectin, cyromazine, and the widely used fungicide mancozeb on two common Australian leafminer parasitoids, Hemiptarsenus varicornis (Girault) and Diglyphus isaea (Walker). Abamectin caused significant mortality to larvae and pupae of both parasitoid species but cyromazine and mancozeb did not. Progeny production and longevity of H. varicornis were not affected by adult exposure to cyromazine and mancozeb, nor did direct pupal exposure decrease number of progeny produced by either parasitoid. Mortality of H. varicornis females emerging from leaves treated with abamectin was high for up to 72 h after eclosion but those surviving beyond 72 h did not differ from control females in the number of progeny produced. Mancozeb did not influence leaf residence time or parasitism by H. varicornis females. Cyromazine and the fungicide mancozeb were concluded to be compatible with the parasitoids tested and suitable for integrated pest management of leafminers should outbreaks of pest species occur in Australia. Abamectin should be used with caution because it caused significant mortality in both parasitoids tested here.

    Topics: Animals; Australia; Diptera; Female; Hymenoptera; Insecticides; Ivermectin; Longevity; Maneb; Pupa; Reproduction; Triazines; Zineb

2005
Toxicity of chemicals commonly used in Indonesian vegetable crops to Liriomyza huidobrensis populations and the Indonesian parasitoids Hemiptarsenus varicornis, Opius sp., and Gronotoma micromorpha, as well as the Australian parasitoids Hemiptarsenus vari
    Journal of economic entomology, 2004, Volume: 97, Issue:4

    Liriomyza huidobrensis (Blanchard) and Liriomyza sativae (Blanchard) are important pests of vegetable crops in Indonesia and are likely to spread to neighboring countries. Three pesticides (dimehypo, abamectin, and cyromazine) are currently used to control these pests, but there is little information on their effectiveness against field populations and on their impact on parasitoids controlling Liriomyza species. The toxicity of these chemicals to L. huidobrensis and three common parasitoids (Hemiptarsenus varicornis Gerault, Opius sp., and Gronotoma micromorpha Perkins) was therefore evaluated in Indonesia with mortality laboratory assays. All three chemicals were effective against larvae of three populations of L. huidobrensis with different histories of chemical exposure. Dimehypo caused mortality in adult Opius sp., G. micromorpha, and H. varicornis, whereas abamectin was toxic only at concentrations substantially higher than the field rate. Cyromazine did not influence survival of the parasitoids. A commonly used fungicide, mancozeb, had no impact on parasitoid mortality. Trials were repeated with a strain of H. varicornis from Australia and a different parasitoid (Diglyphus isaea) recently found in Australia. Neither parasitoid was influenced by mancozeb or cyromazine. Abamectin applied at field rates caused some mortality among the adults of both species, but was less toxic than chlorpyrifos. Abamectin produced lower LC50s against Australian H. varicornis than against Indonesian H. varicornis. These results suggest that cyromazine can be incorporated into Liriomyza control programs in Indonesia that conserve parasitoids, whereas dimehypo and abamectin need to be used cautiously. Local Australian parasitoids should help control L. huidobrensis as long as only cyromazine and nontoxic fungicides are applied.

    Topics: Agriculture; Animals; Australia; Diptera; Fungicides, Industrial; Hymenoptera; Indonesia; Insecticides; Ivermectin; Larva; Maneb; Pest Control, Biological; Triazines; Vegetables; Zineb

2004