n-succinimidyl-4-fluorobenzoate has been researched along with 4-nitrophenyl-2-fluoropropionate* in 2 studies
2 other study(ies) available for n-succinimidyl-4-fluorobenzoate and 4-nitrophenyl-2-fluoropropionate
Article | Year |
---|---|
Radiofluorinated rhenium cyclized α-MSH analogues for PET imaging of melanocortin receptor 1.
In order to accomplish in vivo molecular imaging of melanoma biomarker melanocortin 1 receptor (MC1R), several α-melanocyte-stimulating hormone (α-MSH) analogues have been labeled with N-succinimidyl-4-¹⁸F-fluorobenzoate (¹⁸)F-SFB) and studied as positron emission tomography (PET) probes in our recent studies. To further pursue a radiofluorinated α-MSH peptide with high clinical translation potential, we utilized 4-nitrophenyl 2-¹⁸F-fluoropropionate (¹⁸F-NFP) to radiofluorinate the transition metal rhenium cyclized α-MSH metallopeptides for PET imaging of MC1R positive malignant melanoma. Metallopeptides Ac-d,Lys-ReCCMSH(Arg¹¹) (two isomers, namely RMSH-1 and RMSH-2) were synthesized using conventional solid phase peptide synthesis chemistry and rhenium cyclization reaction. The two isomers were then conjugated with ¹⁹F-NFP or ¹⁸F-NFP. The resulting cold or radiofluorinated metallopeptides, (¹⁸/¹⁹)F-FP-RMSH-1 and (¹⁸/¹⁹)F-FP-RMSH-2, were further evaluated for their in vitro receptor binding affinities, in vivo biodistribution, and small-animal PET imaging properties. The binding affinities of ¹⁹F-FP-RMSH-1 and ¹⁹F-FP-RMSH-2 were determined to be within low nanomolar range. In vivo studies revealed that both F-labeled metallopeptides possessed good tumor uptake in the B16F10 murine model with high MC1R expression, while possessing much lower uptake in A375M human melanoma xenografts. Moreover, ¹⁸F-FP-RMSH-1 displayed more favorable in vivo performance in terms of higher tumor uptake and much lower accumulation in the kidney and liver, when compared to that of ¹⁸F-FP-RMSH-2 at 2 h postinjection (p.i.). ¹⁸F-FP-RMSH-1 also displayed lower liver and lung uptake when compared with that of the same peptide labeled with ¹⁸F-SFB (named as ¹⁸F-FB-RMSH-1). Small animal PET imaging of ¹⁸F-FP-RMSH-1 in mice bearing B16F10 tumors at 1 and 2 h showed good tumor imaging quality. As expected, much lower tumor uptake and poorer tumor/normal organ contrast were observed for A375M model compared to those of the B16F10 model. ¹⁸F-FP-RMSH-1 also exhibited higher tumor uptake and better tumor retention when compared with ¹⁸F-FB-RMSH-1. ¹⁸F-FP-RMSH-1 demonstrates significant advantages over ¹⁸F-FB-RMSH-1 and ¹⁸F-FP-RMSH-2. It is a promising PET probe for imaging MC1R positive melanoma and MC1R expression in vivo. Topics: alpha-MSH; Animals; Azides; Benzoates; Biomarkers, Tumor; Cell Line, Tumor; Cyclization; Humans; Isotope Labeling; Male; Melanoma, Experimental; Mice; Mice, Inbred C57BL; Mice, Nude; Neoplasm Transplantation; Positron-Emission Tomography; Radiopharmaceuticals; Receptor, Melanocortin, Type 1; Rhenium; Skin Neoplasms; Succinimides; Tissue Distribution; Transplantation, Heterologous | 2010 |
A comparative study of N.C.A. fluorine-18 labeling of proteins via acylation and photochemical conjugation.
Three methods for 18F-labeling of proteins were evaluated with respect to conjugation yields, suitability for remote-controlled routine synthesis, and in vivo stability of the conjugates-i.e., photochemical conjugation (PCC) using 4-azidophenacyl-[18F]fluoride ([18F]APF) as well as classical conjugation using 4-nitrophenyl 2-[18F]fluoropropionate ([18F]NPFP) and N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB). For this purpose, [18F]APF was synthesized in one step with a radiochemical yield (RCY) of up to 70% within about 15 min. The 18F-labeling was performed by photogeneration of the corresponding [18F]arylnitrene by irradiating [18F]APF with UV light in presence of the protein in aqueous buffered solution. Using this procedure, human serum albumin (HSA), transferrin, IgG, and avidin were labeled. The [18F]NPFP was synthesized according to a recently published method. Preparation of [18F]SFB was achieved within 35 min with radiochemical yields of 55 +/- 10% by an improved method using O-(N-succinimidyl)-N-N,N',N'-tetramethyluronium tetrafluoroborate (TSTU) as activating reagent. Compared to [18F]APF, protein labeling with [18F]NPFP and [18F]SFB gave rise to considerably higher RCY, of up to 90%. Labeling studies showed that conjugation yields using [18F]NPFP depend on the lysine, tyrosine, and histidine content of the proteins used, whereas conjugation with [18F]APF and [18F]SFB predominantly depends on the Lys content. Owing to competing O-acylation of Tyr residues, [18F]fluoropropionylated HSA was partially unstable under slightly basic conditions. Biodistribution studies with 18F-labeled HSA in NMRI mice revealed the highest in vivo stability for the [18F]SFB conjugate. Based on these results, [18F]SFB seems to be the most suitable 18F-labeling agent for proteins, particularly for the labeling of antibodies. Topics: Acylation; Animals; Avidin; Azides; Benzoates; Fluorine Radioisotopes; Humans; Immunoglobulin G; Indicators and Reagents; Isotope Labeling; Mice; Mice, Inbred Strains; Photochemistry; Proteins; Serum Albumin; Succinimides; Tissue Distribution; Transferrin | 1996 |