n-pentanoyl-2-benzyltryptamine has been researched along with luzindole* in 6 studies
6 other study(ies) available for n-pentanoyl-2-benzyltryptamine and luzindole
Article | Year |
---|---|
Effect of melatonin and analogues on corneal wound healing: involvement of Mt2 melatonin receptor.
We have investigated the effect of melatonin and its analogues on rabbit corneal epithelial wound healing.. New Zealand rabbits were anaesthetised and wounds were made by placing Whatman paper discs soaked in n-heptanol on the cornea. Melatonin and analogues (all 10 nmol) were instilled. Wound diameter was measured every 2 hours by means of fluorescein application with a Topcon SL-8Z slit lamp. Melatonin antagonists (all 10 nmol) were applied 2 hours before the application of the n-heptanol-soaked disc and then every 6 hours together with melatonin. To confirm the presence of MT2 receptors in corneal epithelial cells immunohistochemistry, Western blot and RT-PCR assays in native tissue and in rabbit corneal epithelial cells were performed. The tear components were extracted then processed by HPLC to quantify melatonin in tears.. Migration assays revealed that melatonin and particularly the treatment with the MT2 agonist IIK7, accelerated the rate of healing (p < 0.001). The application of the non-selective melatonin receptor antagonist luzindole and the MT2 antagonist DH97 (but not prazosin), prevented the effect of melatonin on wound healing (both p < 0.001). Immunohistochemistry, Western blot and RT-PCR assays showed the presence of MT2 melatonin receptor in corneal epithelial cells. In addition, we have identified melatonin in tears and determined its daily variations.. These data suggest that MT2 receptors are implicated in the effect of melatonin on corneal wound healing regulating migration rate. This suggests the potential use of melatonin and its analogues to enhance epithelial wound healing in ocular surface disease. Topics: Animals; Antioxidants; Blotting, Western; Burns, Chemical; Cell Line; Epithelium, Corneal; Eye Burns; Eye Proteins; Heptanol; Immunohistochemistry; Isoindoles; Male; Melatonin; Rabbits; Receptor, Melatonin, MT2; Reverse Transcriptase Polymerase Chain Reaction; Tears; Tryptamines; Wound Healing | 2015 |
Design of novel melatonin analogs for the reduction of intraocular pressure in normotensive rabbits.
Melatonin, the MT(2) melatonin receptor agonist IIK7 [N-butanoyl-2-(2-methoxy-6H-isoindolo[2,1-a]indol-11-yl)ethanamine], and the putative MT(3) melatonin receptor agonist 5-MCA-NAT [5-methoxycarbonylamino-N-acetyltryptamine] have previously been shown to reduce intraocular pressure (IOP) in ocular normotensive rabbits. To gain a better understanding of the structure-activity relationship of compounds that activate MT(2) and MT(3) receptors mediating reductions in IOP, novel melatonin analogs with rationally varied substitutions were synthesized and tested for their effects on IOP in ocular normotensive rabbits (n = 160). All synthesized melatonin analogs reduced IOP. The best-effect lowering IOP was obtained with the analogs INS48848 [methyl-1-methylene-2,3,4,9-tetrahydro-1H-carbazol-6-ylcarbamate], INS48862 [methyl-2-bromo-3-(2-ethanamidoethyl)-1H-indol-5-ylcarbamate], and INS48852 [(E)-N-(2-(5-methoxy-1H-indol-3-yl)ethyl)-3-phenylprop-2-enamide]. These compounds produced dose-dependent decreases in IOP that were maximal at 0.1 mM (total dose of 0.259 μg for INS48848, 0.354 μg for INS48862, and 0.320 μg for INS48852) and 1 mM (total dose of 2.59 μg for INS48848, 3.54 μg for INS48862, and 3.20 μg for INS48852), with maximal reductions of 36.0 ± 4.0, 24.0 ± 1.5, and 30.0 ± 1.5% for INS48848, INS48862, and INS48852, respectively. Studies using melatonin receptor antagonists (luzindole, prazosin, and DH97 [N-pentanoyl-2-benzyltryptamine]) indicated that INS48862 and INS48852 activate preferentially a MT(2) melatonin receptor and suggest that INS48848 may act mainly via a MT(3) receptor. The most effective compounds were also well tolerated in a battery of standard ocular surface irritation studies. The implication of these findings to the design of novel drugs to treat ocular hypertension is discussed. Topics: Animals; Dose-Response Relationship, Drug; Drug Design; Eye; Glaucoma; Intraocular Pressure; Isoindoles; Melatonin; Ocular Hypertension; Rabbits; Receptor, Melatonin, MT2; Receptors, Melatonin; Structure-Activity Relationship; Time Factors; Tryptamines | 2011 |
Melatonin-enhanced hyperactivation of hamster sperm.
The effects of melatonin on reproductive function were examined using hamster spermatozoa. When 1 pM to 1 microM melatonin was added to the mTALP medium, hyperactivation was significantly enhanced. Antagonists and agonists of the melatonin receptor (i.e., MT1 and MT2) were added to the medium. Luzindole, an MT1 and MT2 competitive antagonist, significantly inhibited melatonin-induced hyperactivation, whereas the MT2-specific antagonists, 4-phenyl-2-propionamidotetralin and N-pentanoyl-2-benzyltryptamine, had no effect. Moreover, hyperactivation was significantly enhanced when non-specific agonists, such as 6-chloromelatonin and 2-iodomelatonin, were added to the medium. 8-Methoxy-2-propionamidotetralin, which is a strong MT2 agonist and a weak MT1 agonist, significantly increased hyperactivation, although the effect was weak. Therefore, it is likely that melatonin enhances sperm hyperactivation via the MT1 receptor. Topics: Animals; Calcium; Cells, Cultured; Cricetinae; Culture Media; Dose-Response Relationship, Drug; Male; Melatonin; Mesocricetus; Receptor, Melatonin, MT1; Receptor, Melatonin, MT2; Serum Albumin; Sperm Motility; Spermatozoa; Stimulation, Chemical; Tetrahydronaphthalenes; Time; Tryptamines | 2008 |
Melatonin enhances the hypoxic response of rat carotid body chemoreceptor.
Melatonin attenuates carotid chemoreceptor response to hypercapnic acidosis and may contribute to the effect of circadian rhythms on the chemoreflex. The purpose of this study was to test the hypothesis that melatonin modulates rat carotid chemoreceptor response to hypoxia. To examine the effect of melatonin on the hypoxic response of the chemosensitive cells, cytosolic calcium ([Ca2+]i) was measured by spectrofluorometry in fura-2-loaded type-I (glomus) cells dissociated from rat carotid bodies. Melatonin (0.01-10 nm) did not change the resting Ca2+]i level of the glomus cells but it concentration-dependently increased peak Ca2+]i response to cyanide or deoxygenated buffer. An agonist of melatonin receptors, iodomelatonin also enhanced the Ca2+]i response to hypoxia. The melatonin-induced enhancement of the Ca2+]i response was abolished by pretreatment with nonselective mt1/MT2 antagonist, luzindole, and by MT2 antagonists, 4-phenyl-2-propionamidotetraline or DH97. These findings suggest that melatonin receptors in the glomus cells mediate the effect of melatonin on the chemoreceptor response to hypoxia. In addition, melatonin increased the carotid afferent response to hypoxia in unitary activities recorded from the sinus nerve in isolated carotid bodies superfused with bicarbonate-buffer saline. Furthermore, plethysmographic measurement of ventilatory activities in unanesthetized rats revealed that melatonin (1 mg/kg, i.p.) increased the ventilatory response to hypoxia. Hence, the circadian rhythm of melatonin in arterial blood can modulate the carotid chemoreceptor response to hypoxia. This modulation may be a physiological mechanism involved in the day-light differences in ventilatory activities. Topics: Animals; Calcium; Carotid Body; Chemoreceptor Cells; Circadian Rhythm; Hypoxia; In Vitro Techniques; Melatonin; Rats; Rats, Sprague-Dawley; Receptors, Melatonin; Respiration; Tetrahydronaphthalenes; Tryptamines | 2005 |
Melatonin attenuates rat carotid chemoreceptor response to hypercapnic acidosis.
Respiratory activity is under circadian modulation and the physiological mechanisms may involve the pineal secretory product, melatonin, and the carotid chemoreceptor. We hypothesized that melatonin modulates the carotid chemoreceptor response to hypercapnic acidosis. To determine whether the effect of melatonin on the chemoreceptor response to hypercapnic acidosis is mediated by melatonin receptors in the chemosensitive cells, cytosolic calcium ([Ca2+]i) was measured by spectrofluorometry in fura-2-loaded glomus cells dissociated from rat carotid bodies. Melatonin (0.01-10 nm) per se did not change the [Ca2+]i levels of the glomus cells but it concentration-dependently attenuated the peak [Ca2+]i response to hypercapnic acidosis in the glomus cells. In addition, the [Ca2+]i response was attenuated by 2-iodomelatonin, an agonist of melatonin receptors. The melatonin-induced attenuation of the [Ca2+]i response to hypercapnic acidosis was abolished by pretreatment with an non-selective mt1/MT2 antagonist, luzindole, and by MT2 antagonists, 4-phenyl-2-propionamidotetraline or DH97. In situ hybridization study with antisense mt1 and MT2 receptor mRNA oligonucleotide probes showed an expression of mt1 and MT2 receptors in the rat carotid body. Also, melatonin attenuated the carotid afferent response to hypercapnic acidosis in single- or pauci-fibers recorded from the sinus nerve in isolated carotid bodies superfused with bicarbonate-buffer saline. Results suggest that an activation of the melatonin receptors expressed in the glomus cells of the rat carotid body reduces the chemoreceptor response to hypercapnic acidosis. This modulation may play a physiological role in the influence of the circadian rhythms on the chemoreflex. Topics: Acidosis, Respiratory; Animals; Calcium; Carotid Body; Chemoreceptor Cells; Electrophysiology; Fura-2; Hypercapnia; Melatonin; Rats; Rats, Sprague-Dawley; Receptor, Melatonin, MT1; Receptor, Melatonin, MT2; Receptors, Melatonin; Tetrahydronaphthalenes; Tryptamines | 2004 |
Comparison of the structure-activity relationships of melatonin receptor agonists and antagonists: lengthening the N-acyl side-chain has differing effects on potency on Xenopus melanophores.
The potency and affinity of two series of melatonin receptor ligands were examined using the pigment aggregation response in a clonal line of Xenopus laevis melanophores and radioligand binding assays on native receptors in chicken brain, recombinant human mt1 and MT2 and Xenopus laevis mel1c receptor subtypes. One series was based on melatonin and had a methoxy group at the 5-position of the indole ring, while the other was based on luzindole and lacked this substituent but did have a 2-benzyl moiety; the N-acyl group of each series of analogues was varied from one to five carbon atoms. All analogues in the melatonin series were full agonists in melanophores (pEC50 7.76-10.24), while all compounds in the luzindole series were competitive melatonin antagonists (pA2 5.47-6.60). With the agonist series, increasing the N-acyl side-chain from one to three carbon atoms was well tolerated in both the functional and binding assays, but further lengthening of the side-chain progressively and dramatically reduced potency and affinity. In contrast, for the antagonist series neither potency nor binding affinity changed substantially with the length of the N-acyl chain, except at the recombinant MT2 subtype where two of the analogues had a lower affinity. In binding assays, three of the five antagonists were MT2-selective; the most selective analogue (N-pentanoyl 2-benzyltryptamine, MT2 pKi 8.03) having 89- and 229-fold higher affinity than at mt1 or mel1c receptor subtypes. The different structure-activity relationships of these receptor agonists and antagonists is discussed with regard to the possible binding sites of agonists and antagonists within the receptor protein. Topics: 3T3 Cells; Animals; Binding, Competitive; COS Cells; Melanophores; Melanosomes; Melatonin; Mice; Radioligand Assay; Receptors, Cell Surface; Receptors, Cytoplasmic and Nuclear; Receptors, Melatonin; Structure-Activity Relationship; Tryptamines; Xenopus laevis | 1998 |