n-oleoylethanolamine and palmidrol

n-oleoylethanolamine has been researched along with palmidrol* in 105 studies

Reviews

8 review(s) available for n-oleoylethanolamine and palmidrol

ArticleYear
GPR119 and GPR55 as Receptors for Fatty Acid Ethanolamides, Oleoylethanolamide and Palmitoylethanolamide.
    International journal of molecular sciences, 2021, Jan-21, Volume: 22, Issue:3

    Oleoylethanolamide and palmitoylethanolamide are members of the fatty acid ethanolamide family, also known as acylethanolamides. Their physiological effects, including glucose homeostasis, anti-inflammation, anti-anaphylactic, analgesia, and hypophagia, have been reported. They have affinity for different receptor proteins, including nuclear receptors such as PPARα, channels such as TRPV1, and membrane receptors such as GPR119 and GPR55. In the present review, the pathophysiological functions of fatty acid ethanolamides have been discussed from the perspective of receptor pharmacology and drug discovery.

    Topics: Amides; Analgesia; Animals; Anti-Inflammatory Agents; Drug Development; Endocannabinoids; Ethanolamines; Fatty Acids; Glucose; Humans; Lipid Mobilization; Oleic Acids; Palmitic Acids; Receptors, Cannabinoid; Receptors, G-Protein-Coupled

2021
Neuroprotective properties of peroxisome proliferator-activated receptor alpha (PPARα) and its lipid ligands.
    Current medicinal chemistry, 2014, Volume: 21, Issue:24

    Signalling lipids are known to control a wide array of cellular processes, including cell proliferation, apoptosis, migration, and energy metabolism. Fatty acids and their derivatives, eicosanoids, phosphoinositides, sphingolipids, some cannabinoid-like molecules bind and activate nuclear receptors, including peroxisome proliferator-activated receptors (PPARs). This subfamily of transcription factors comprises three isotypes - PPARα (NR1C1), PPAR β/δ (NR1C2), PPARγ (NR1C3) - which bind to specific DNA response elements, as heterodimers with retinoid X receptors. PPAR activity is modulated by post-translational modifications and cofactors, towards which they show differential affinity. The three PPARs mutually interact, being integrated in a complex system, leading to the concept of a "PPAR triad". Nevertheless, the isotypes also show distinct actions on cellular physiology and partially different tissue, ligand and target gene specificities. In the brain, while the functions of PPARγ and its ligands are being thoroughly investigated, the actual and potential roles of PPARα and β/δ are far from being clarified. PPARα appears especially intriguing, since it is selectively expressed in certain brain areas and neuronal/glial populations, and modulates antioxidant responses, neurotransmission, neuroinflammation, neurogenesis, and glial cell proliferation/differentiation. This receptor and its endogenous ligands, including oleoylethanoloamide (OEA) and palmitoylethanolamide (PEA), are involved in physiological and pathological responses, such as satiety, memory consolidation, and modulation of pain perception. The protective role of PPARα agonists in neurodegenerative diseases and in neuropsychiatric disorders makes manipulation of this pathway highly attractive as therapeutic strategy for neuropathological conditions. In this review, we focus on the pleiotropic functions of PPARα and its lipid ligands in the nervous tissue, devoting special attention to neuroprotection.

    Topics: Amides; Animals; Endocannabinoids; Ethanolamines; Humans; Ligands; Mental Disorders; Neurodegenerative Diseases; Neuroprotective Agents; Oleic Acids; Palmitic Acids; PPAR alpha

2014
Role of anorectic N-acylethanolamines in intestinal physiology and satiety control with respect to dietary fat.
    Pharmacological research, 2014, Volume: 86

    Anandamide is a well-known agonist for the cannabinoid receptors. Along with endogenous anandamide other non-endocannabinoid N-acylethanolamines are also formed, apparently in higher amounts. These include mainly oleoylethanolamide (OEA), palmitoyelethanolamide (PEA) and linoleoylethanolamide (LEA), and they have biological activity by themselves being anorectic and anti-inflammatory. It appears that the major effect of dietary fat on the level of these molecules is in the gastrointestinal system, where OEA, PEA and LEA in the enterocytes may function as homeostatic signals, which are decreased by prolonged consumption of a high-fat diet. These lipid amides appear to mediate their signaling activity via activation of PPARα in the enterocyte followed by activation of afferent vagal fibers leading to the brain. Through this mechanism OEA, PEA and LEA may both reduce the consumption of a meal as well as increase the reward value of the food. Thus, they may function as homeostatic intestinal signals involving hedonic aspects that contribute to the regulation of the amounts of dietary fat to be ingested.

    Topics: Amides; Animals; Appetite; Dietary Fats; Endocannabinoids; Enterocytes; Ethanolamines; Humans; Intestines; Linoleic Acids; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides

2014
Targeting the interaction between fatty acid ethanolamides and nicotinic receptors: therapeutic perspectives.
    Pharmacological research, 2014, Volume: 86

    Nicotine is one of the drugs of abuse that frequently causes addiction and relapse during abstinence. Nicotine's strong addicting properties reside in its ability to enhance dopamine transmission, and to induce specific changes in synaptic plasticity. Currently, approved therapies for smoking cessation increase the chances of remaining abstinent, but lack high levels of efficacy and are associated with significant adverse side effects. As a result, there is an urgent need for more effective antismoking medications. Studies have revealed that drugs targeting the peroxisome proliferator-activated-receptor-α (PPARα) show promise for the treatment of nicotine addiction. These drugs include synthetic PPARα ligands, such as the clinically available hypolipidemic fibrates, and drugs that increase levels of endogenous endocannabinoid-like fatty acid ethanolamides (FAEs) that act as PPARα agonists. In this review, we will discuss the specific interaction between PPARα and nicotine, and the molecular mechanisms whereby these intracellular receptors regulate nicotinic acetylcholine receptor functions in neurons. Modulation of neurophysiological, neurochemical and behavioral effects of nicotine by PPARα will be also reviewed. Indeed, a picture is emerging where FAEs are endogenous regulators of acetylcholine transmission. Notably, the implications of this specific cross talk extend beyond nicotine addiction, and might bear relevance for psychiatric disorders and epilepsy.

    Topics: Amides; Animals; Endocannabinoids; Ethanolamines; Humans; Molecular Targeted Therapy; Nervous System Diseases; Nicotine; Oleic Acids; Palmitic Acids; PPAR alpha; Receptors, Nicotinic; Tobacco Use Disorder

2014
New players in the fatty acyl ethanolamide metabolism.
    Pharmacological research, 2014, Volume: 86

    Fatty acyl ethanolamides represent a class of endogenous bioactive lipid molecules and are generally referred to as N-acylethanolamines (NAEs). NAEs include palmitoylethanolamide (anti-inflammatory and analgesic substance), oleoylethanolamide (anorexic substance), and anandamide (endocannabinoid). The endogenous levels of NAEs are mainly regulated by enzymes responsible for their biosynthesis and degradation. In mammalian tissues, the major biosynthetic pathway starts from glycerophospholipids and is composed of two enzyme reactions. The first step is N-acylation of ethanolamine phospholipids catalyzed by Ca(2+)-dependent N-acyltransferase and the second step is the release of NAEs from N-acylated ethanolamine phospholipids by N-acylphosphatidylethanolamine (NAPE)-hydrolyzing phospholipase D (NAPE-PLD). As for the degradation of NAEs, fatty acid amide hydrolase plays the central role. However, recent studies strongly suggest the involvement of other enzymes in the NAE metabolism. These enzymes include members of the HRAS-like suppressor family (also called phospholipase A/acyltransferase family), which were originally discovered as tumor suppressors but can function as Ca(2+)-independent NAPE-forming N-acyltransferases; multiple enzymes involved in the NAPE-PLD-independent multi-step pathways to generate NAE from NAPE, which came to light by the analysis of NAPE-PLD-deficient mice; and a lysosomal NAE-hydrolyzing acid amidase as a second NAE hydrolase. These newly recognized enzymes may become the targets for the development of new therapeutic drugs. Here, we focus on recent enzymological findings in this area.

    Topics: Acyltransferases; Amides; Animals; Endocannabinoids; Ethanolamines; Humans; Oleic Acids; Palmitic Acids; Phosphatidylethanolamines; Phospholipase D

2014
Palmitoylethanolamide and other anandamide congeners. Proposed role in the diseased brain.
    Experimental neurology, 2010, Volume: 224, Issue:1

    Acylethanolamides are formed in the brain "on demand" from membrane phospholipids called N-acylated phosphatidylethanolamines. The acylethanolamides are signaling molecules of lipid nature, and this lipofilicity suggests an autocrine function. The acylethanolamides include palmitoylethanolamide (PEA), oleoylethanolamide (OEA), stearoylethanolamide (SEA), and several other quantitative minor species including anandamide (= arachidonoylethanolamide). PEA and OEA can activate several different receptors and inhibit some ion channels, e.g., PPARalpha, vanilloid receptor, K(+) channels (Kv4.3, Kv1.5), and OEA can activate GPR119 and inhibit ceramidases. Targets for SEA are less clear, but it has some cannabimimetic actions in rats in vivo. All acylethanolamides accumulate during neuronal injury, and injected OEA has neuroprotective effects, and PEA has anti-inflammatory effects as studied in the peripheral system. Several of the pharmacological effects seem to be mediated via activation of PPARalpha. Recently, injected OEA has been found to consolidate memories in rats. Inhibitors of the acylethanolamide-degrading enzyme FAAH can increase levels of all acylethanolamides including annandamide, and some of the pharmacological effects caused by these inhibitors may be explained by increased cerebral levels of OEA and PEA, e.g., suppression of nicotine-induced activation of dopamine neurons. Furthermore, through activation of PPARalpha, OEA and PEA may stimulate neurosteroid synthesis, thereby modulating several biological functions mediated by GABA(A) receptors. The existence of acylethanolamides in the mammalian brain has been known for decades, but it is first within the last few years that the putative biological functions of the three most abundant acylethanolamides species are starting to emerge.

    Topics: Amides; Animals; Arachidonic Acids; Brain; Cytoprotection; Endocannabinoids; Ethanolamines; Humans; Nerve Degeneration; Neurons; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Receptors, Cannabinoid

2010
Role of acylethanolamides in the gastrointestinal tract with special reference to food intake and energy balance.
    Best practice & research. Clinical endocrinology & metabolism, 2009, Volume: 23, Issue:1

    Acylethanolamides (AEs) are a group of lipids occurring in both plants and animals. The best-studied AEs are the endocannabinoid anandamide (AEA), the anti-inflammatory compound palmitoylethanolamide (PEA), and the potent anorexigenic molecule oleoylethanolamide (OEA). AEs are biosynthesized in the gastrointestinal tract, and their levels may change in response to noxious stimuli, food deprivation or diet-induced obesity. The biological actions of AEs within the gut are not limited to the modulation of food intake and energy balance. For example, AEs exert potential beneficial effects in the regulation of intestinal motility, secretion, inflammation and cellular proliferation. Molecular targets of AEs, which have been identified in the gastrointestinal tract, include cannabinoid CB(1) and CB(2) receptors (activated by AEA), transient receptor potential vanilloid type 1 (TRPV1, activated by AEA and OEA), the nuclear receptor peroxisome proliferators-activated receptor-alpha (PPAR-alpha, activated by OEA and, to a less extent, by PEA), and the orphan G-coupled receptors GPR119 (activated by OEA) and GPR55 (activated by PEA and, with lower potency, by AEA and OEA). Modulation of AE levels in the gut may provide new pharmacological strategies not only for the treatment of feeding disorders but also for the prevention or cure of widespread intestinal diseases such as inflammatory bowel disease and colon cancer.

    Topics: Amides; Analgesics; Animals; Anti-Inflammatory Agents; Antineoplastic Agents; Apoptosis; Arachidonic Acids; Caco-2 Cells; Dietary Fats; Eating; Endocannabinoids; Energy Metabolism; Ethanolamine; Ethanolamines; Feeding Behavior; Gastric Acid; Gastrointestinal Tract; Humans; Intestinal Absorption; Intra-Abdominal Fat; Oleic Acids; Palmitic Acids; Peroxisome Proliferator-Activated Receptors; Polyunsaturated Alkamides; TRPV Cation Channels

2009
GPR55: a new member of the cannabinoid receptor clan?
    British journal of pharmacology, 2007, Volume: 152, Issue:7

    In this issue of the British Journal of Pharmacology, Ryberg et al. present convincing in vitro evidence that the orphan GPCR, GPR55, is a cannabinoid receptor. GPR55 was activated by a range of plant, synthetic and endogenous cannabinoids and blocked by the non-psychoactive phytocannabinoid, cannabidiol. Their experiments have revealed several differences between the pharmacology of GPR55 and the established cannabinoid CB1 and CB2 receptors. For example, the CB1 receptor antagonist, AM251, activated GPR55 and the main psychoactive constituent of cannabis, Delta9-tetrahydrocannabinol, displayed greater efficacy at GPR55 than at CB1 or CB2 receptors. They also compared the distribution of GPR55 and CB1 mRNA in mouse and report that GPR55 couples to Galpha13, that it is activated by virodhamine, palmitoylethanolamide and oleoylethanolamide, and that virodhamine displays relatively high efficacy as a GPR55 agonist. Still to be identified are the main roles played by GPR55 in health and disease and any potential therapeutic benefits of activating or blocking this receptor.

    Topics: Amides; Animals; Arachidonic Acids; Cannabinoids; Dronabinol; Endocannabinoids; Ethanolamines; Humans; Oleic Acids; Palmitic Acids; Piperidines; Pyrazoles; Receptors, Cannabinoid; Receptors, G-Protein-Coupled

2007

Trials

3 trial(s) available for n-oleoylethanolamine and palmidrol

ArticleYear
Oleic acid content of a meal promotes oleoylethanolamide response and reduces subsequent energy intake in humans.
    Food & function, 2015, Volume: 6, Issue:1

    Animal data suggest that dietary fat composition may influence endocannabinoid (EC) response and dietary behavior. This study tested the hypothesis that fatty acid composition of a meal can influence the short-term response of ECs and subsequent energy intake in humans. Fifteen volunteers on three occasions were randomly offered a meal containing 30 g of bread and 30 mL of one of three selected oils: sunflower oil (SO), high oleic sunflower oil (HOSO) and virgin olive oil (VOO). Plasma EC concentrations and appetite ratings over 2 h and energy intake over 24 h following the experimental meal were measured. Results showed that after HOSO and VOO consumption the circulating oleoylethanolamide (OEA) was significantly higher than after SO consumption; a concomitantly significant reduction of energy intake was found. For the first time the oleic acid content of a meal was demonstrated to increase the post-prandial response of circulating OEA and to reduce energy intake at subsequent meals in humans.

    Topics: Adult; Amides; Appetite Regulation; Breakfast; Cross-Over Studies; Diet Records; Endocannabinoids; Energy Intake; Ethanolamines; Female; Humans; Italy; Linoleic Acids; Male; Oleic Acid; Oleic Acids; Olive Oil; Palmitic Acids; Plant Oils; Polyunsaturated Alkamides; Postprandial Period; Sunflower Oil; Young Adult

2015
Food Liking Enhances the Plasma Response of 2-Arachidonoylglycerol and of Pancreatic Polypeptide upon Modified Sham Feeding in Humans.
    The Journal of nutrition, 2015, Volume: 145, Issue:9

    Food palatability increases food intake and may lead to overeating. The mechanisms behind this observation are still largely unknown.. The aims of this study were the following: 1) to elucidate the plasma responses of endocannabinoids, N-acylethanolamines, and gastrointestinal peptides to a palatable (sweet), unpalatable (bitter), and sensory-acceptable (tasteless control) food, and 2) to verify whether some of these bioactive compounds can serve as plasma biomarkers of food liking in humans.. Three puddings providing 60 kcal (35% from proteins, 62% from carbohydrates, and 3% from fats) but with different taste were developed. Twenty healthy subjects (11 women and 9 men; mean age 28 y and BMI 22.7 kg/m(2)), selected because they liked the puddings in the order sweet > control > bitter, participated in a randomized crossover study based on a modified sham feeding (MSF) protocol. Blood samples at baseline and every 5 min up to 20 min after the MSF were analyzed for gastrointestinal peptides, endocannabinoids, and N-acylethanolamines. Thirty minutes after the MSF, energy intake at an ad libitum breakfast was measured.. After the MSF, no response was observed in 7 of 9 gastrointestinal peptides measured. The plasma ghrelin concentration at 20 min after the sweet and bitter puddings was 25% lower than after the control pudding (P = 0.04), and the pancreatic polypeptide response after the sweet pudding was 23% greater than after the bitter pudding (P = 0.02). The plasma response of 2-arachidonoylglycerol after the sweet pudding was 37% and 15% higher than after the bitter (P < 0.001) and control (P = 0.03) puddings, respectively. Trends for greater responses of anandamide (P = 0.06), linoleoylethanolamide (P = 0.07), palmitoylethanolamide (P = 0.06), and oleoylethanolamide (P = 0.09) were found after the sweet pudding than after the bitter pudding. No differences in subsequent energy intake were recorded.. The data demonstrated that food palatability influenced some plasma endocannabinoid and N-acylethanolamine concentrations during the cephalic phase response and indicated that 2-arachidonoylglycerol and pancreatic polypeptide can be used as biomarkers of food liking in humans.

    Topics: Adult; Amides; Arachidonic Acids; Blood Glucose; Body Mass Index; Cross-Over Studies; Edetic Acid; Endocannabinoids; Energy Intake; Ethanolamines; Female; Food Preferences; Ghrelin; Glycerides; Humans; Linear Models; Linoleic Acids; Male; Oleic Acids; Palmitic Acids; Pancreatic Polypeptide; Polyunsaturated Alkamides; Taste; Young Adult

2015
Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia.
    Translational psychiatry, 2012, Mar-20, Volume: 2

    Cannabidiol is a component of marijuana that does not activate cannabinoid receptors, but moderately inhibits the degradation of the endocannabinoid anandamide. We previously reported that an elevation of anandamide levels in cerebrospinal fluid inversely correlated to psychotic symptoms. Furthermore, enhanced anandamide signaling let to a lower transition rate from initial prodromal states into frank psychosis as well as postponed transition. In our translational approach, we performed a double-blind, randomized clinical trial of cannabidiol vs amisulpride, a potent antipsychotic, in acute schizophrenia to evaluate the clinical relevance of our initial findings. Either treatment was safe and led to significant clinical improvement, but cannabidiol displayed a markedly superior side-effect profile. Moreover, cannabidiol treatment was accompanied by a significant increase in serum anandamide levels, which was significantly associated with clinical improvement. The results suggest that inhibition of anandamide deactivation may contribute to the antipsychotic effects of cannabidiol potentially representing a completely new mechanism in the treatment of schizophrenia.

    Topics: Acute Disease; Adult; Amides; Amisulpride; Antipsychotic Agents; Arachidonic Acids; Cannabidiol; Double-Blind Method; Drug Therapy, Combination; Endocannabinoids; Ethanolamines; Female; Humans; Male; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Psychiatric Status Rating Scales; Schizophrenia; Schizophrenic Psychology; Signal Transduction; Sulpiride; Young Adult

2012

Other Studies

94 other study(ies) available for n-oleoylethanolamine and palmidrol

ArticleYear
N-acylethanolamine acid amidase (NAAA) inhibition decreases the motivation for alcohol in Marchigian Sardinian alcohol-preferring rats.
    Psychopharmacology, 2021, Volume: 238, Issue:1

    N-acylethanolamine acid amidase (NAAA) is an intracellular cysteine hydrolase that terminates the biological actions of oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), two endogenous lipid-derived agonists of the nuclear receptor, and peroxisome proliferator-activated receptor-α. OEA and PEA are important regulators of energy balance, pain, and inflammation, but recent evidence suggests that they might also contribute to the control of reward-related behaviors.. In the present study, we investigated the effects of systemic and intracerebral NAAA inhibition in the two-bottle choice model of voluntary alcohol drinking and on operant alcohol self-administration.. Intraperitoneal injections of the systemically active NAAA inhibitor ARN19702 (3 and 10 mg/kg) lowered voluntary alcohol intake in a dose-dependent manner, achieving ≈ 47% reduction at the 10 mg/kg dose (p < 0.001). Water, food, or saccharin consumption was not affected by the inhibitor. Similarly, ARN19702 dose-dependently attenuated alcohol self-administration under both fixed ratio 1 (FR-1) and progressive ratio schedules of reinforcement. Furthermore, microinjection of ARN19702 (1, 3 and 10 μg/μl) or of two chemically different NAAA inhibitors, ARN077 and ARN726 (both at 3 and 10 μg/μl), into the midbrain ventral tegmental area produced dose-dependent decreases in alcohol self-administration under FR-1 schedule. Microinjection of ARN19702 into the nucleus accumbens had no such effect.. Collectively, the results point to NAAA as a possible molecular target for the treatment of alcohol use disorder.

    Topics: Alcohol Drinking; Amides; Amidohydrolases; Animals; Carbamates; Choice Behavior; Conditioning, Operant; Dose-Response Relationship, Drug; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Ethers, Cyclic; Male; Motivation; Oleic Acids; Palmitic Acids; Rats; Reinforcement, Psychology; Self Administration

2021
Impact of Circulating N-Acylethanolamine Levels with Clinical and Laboratory End Points in Hemodialysis Patients.
    American journal of nephrology, 2021, Volume: 52, Issue:1

    Patients with ESRD on maintenance hemodialysis (MHD) are particularly susceptible to dysregulation of energy metabolism, which may manifest as protein energy wasting and cachexia. In recent years, the endocannabinoid system has been shown to play an important role in energy metabolism with potential relevance in ESRD. N-acylethanolamines are a class of fatty acid amides which include the major endocannabinoid ligand, anandamide, and the endogenous peroxisome proliferator-activated receptor-α agonists, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA).. Serum concentrations of OEA and PEA were measured in MHD patients and their correlations with various clinical/laboratory indices were examined. Secondarily, we evaluated the association of circulating PEA and OEA levels with 12-month all-cause mortality.. Both serum OEA and PEA levels positively correlated with high-density lipoprotein-cholesterol levels and negatively correlated with body fat and body anthropometric measures. Serum OEA levels correlated positively with serum interleukin-6 (IL-6) (rho = 0.19; p = 0.004). Serum PEA and IL-6 showed a similar but nonsignificant trend (rho = 0.12; p = 0.07). Restricted cubic spline analyses showed that increasing serum OEA and PEA both trended toward higher mortality risk, and these associations were statistically significant for PEA (PEA ≥4.7 pmol/mL; reference: PEA <4.7 pmol/mL) after adjustments in a Cox model (hazard ratio 2.99; 95% confidence interval 1.04, 8.64).. In MHD patients, OEA and PEA are significantly correlated with variables related to lipid metabolism and body mass. Additionally, higher serum levels of PEA are associated with mortality risk. Future studies are needed to examine the potential mechanisms responsible for these findings and their clinical implications.

    Topics: Adult; Aged; Amides; Endocannabinoids; Ethanolamines; Female; Humans; Kidney Failure, Chronic; Male; Middle Aged; Oleic Acids; Palmitic Acids; Renal Dialysis

2021
In vivo brain levels of acetylcholine and 5-hydroxytryptamine after oleoylethanolamide or palmitoylethanolamide administrations are mediated by PPARα engagement.
    The European journal of neuroscience, 2021, Volume: 54, Issue:6

    The peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear receptor that has been linked to the modulation of several physiological functions, including the sleep-wake cycle. The PPARα recognizes as endogenous ligands the lipids oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), which in turn, if systemically injected, they exert wake-promoting effects. Moreover, the activation of PPARα by the administration of OEA or PEA increases the extracellular contents of neurotransmitters linked to the control of wakefulness; however, the role of PPARα activated by OEA or PEA on additional biochemicals related to waking regulation, such as acetylcholine (ACh) and 5-hydroxytryptamine (5-HT), has not been fully studied. Here, we have investigated the effects of treatments of OEA or PEA on the contents of ACh and 5-HT by using in vivo microdialysis techniques coupled to HPLC means. For this purpose, OEA or PEA were systemically injected (5, 10 or 30 mg/kg; i.p.), and the levels of ACh and 5-HT were collected from the basal forebrain, a wake-related brain area. These pharmacological treatments significantly increased the contents of ACh and 5-HT as determined by HPLC procedures. Interestingly, PPARα antagonist MK-886 (30 mg/kg; i.p.) injected before the treatments of OEA or PEA blocked these outcomes. Our data suggest that the activation of PPARα by OEA or PEA produces significant changes on ACh and 5-HT levels measured from the basal forebrain and support the conclusion that PPARα is a suitable molecular element involved in the regulation of wake-related neurotransmitters.

    Topics: Acetylcholine; Amides; Brain; Endocannabinoids; Ethanolamines; Oleic Acids; Palmitic Acids; PPAR alpha; Serotonin

2021
Impact of circadian rhythmicity and sleep restriction on circulating endocannabinoid (eCB) N-arachidonoylethanolamine (anandamide).
    Psychoneuroendocrinology, 2020, Volume: 111

    The endocannabinoid (eCB) system is involved in diverse aspects of human physiology and behavior but little is known about the impact of circadian rhythmicity on the system. The two most studied endocannabinoids, AEA (ananamide) and 2-AG (2-arachidonoylglycerol), can be measured in peripheral blood however the functional relevance of peripheral eCB levels is not clear. Having previously detailed the 24-h profile of serum 2-AG, here we report the 24-h serum profile of AEA to determine if these two endocannabinoids vary in parallel across the biological day including a nocturnal 8.5-h sleep period. Further, we assessed and compared the effect of a physiological challenge, in the form of sleep restriction to 4.5-h, on these two profiles.. In this randomized crossover study, we examined serum concentrations of AEA across a 24-h period in fourteen young adults. Congeners of AEA, the structural analogs oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) were simultaneously assayed. Prior to 24-h blood sampling, each participant was exposed to two nights of normal (8.5 h) or restricted sleep (4.5 h). The two sleep conditions were separated by at least one month. In both sleep conditions, during the period of blood sampling, each individual ate the same high-carbohydrate meal at 0900, 1400, and 1900.. Mean 24-h concentrations of AEA were 0.697 ± 0.11 pmol/ml. A reproducible biphasic 24-h profile of AEA was observed with a first peak occurring during early sleep (0200) and a second peak in the mid-afternoon (1500) while a nadir was detected in the mid-morning (1000). The 24-h profiles for both OEA and PEA followed a similar pattern to that observed for AEA. AEA, OEA, and PEA levels were not affected by sleep restriction at any time of day, contrasting with the elevation of early afternoon levels previously observed for 2-AG.. The 24-h rhythm of AEA is markedly different from that of 2-AG, being of lesser amplitude and biphasic, rather than monophasic. These observations suggest distinct regulatory pathways of the two eCB and indicate that time of day needs to be carefully controlled in studies attempting to delineate their relative roles. Moreover, unlike 2-AG, AEA is not altered by sleep restriction, suggesting that physiological perturbations may affect AEA and 2-AG differently. Similar 24-h profiles were observed for OEA and PEA following normal and restricted sleep, further corroborating the validity of the wave-shape and lack of response to sleep loss observed for the AEA profile. Therapeutic approaches involving agonism or antagonism of peripheral eCB signaling will likely need to be tailored according to time of day.

    Topics: Adolescent; Adult; Amides; Arachidonic Acids; Circadian Rhythm; Cross-Over Studies; Endocannabinoids; Ethanolamines; Female; Glycerides; Humans; Male; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Sleep; Young Adult

2020
Essential fatty acids deficient diet modulates N-Acylethanolamide profile in rat's tissues.
    Prostaglandins, leukotrienes, and essential fatty acids, 2020, Volume: 153

    No data are available on whether a diet deficient of the essential fatty acids is able to modulate tissue levels of endocannabinoids and congeners. Male rats fed for 12 weeks a diet deficient of essential fatty acids, palmitic and oleic acids (EFAD), replaced with saturated fatty acids (SAFA), showed lowered n-3 and n-6 PUFAs levels in plasma, liver and adipose tissue, with concomitant steep increase of oleic and mead acids, while in hypothalamus no changes in PUFA concentration were detected and only palmitoleic acid was found increased. We found a reduction of anandamide and palmitoylethanolamide in liver and brain, while oleoylethanolamide increased significantly in liver and adipose tissue, associated to a 50 % body weight decrease. Changes in N-acylethanolamide profile may contribute to body weight reduction distinctive of EFA deficiency.

    Topics: Adipose Tissue; Amides; Animals; Arachidonic Acids; Body Weight; Brain Chemistry; Endocannabinoids; Ethanolamines; Fatty Acids; Fatty Acids, Essential; Fatty Acids, Omega-3; Fatty Acids, Omega-6; Liver; Male; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Rats

2020
Increased Anandamide and Decreased Pain and Depression after Exercise in Fibromyalgia.
    Medicine and science in sports and exercise, 2020, Volume: 52, Issue:7

    Physical exercise is increasingly being promoted by health care for chronic pain conditions with beneficial outcomes, such as pain and fatigue reduction, and increased quality of life. Nevertheless, knowledge about biochemical consequences of physical exercise in chronic pain is still relatively poor. The endocannabinoid system has been suggested to play a role for acute exercise-induced reward and pain inhibition. The aim of this study is to investigate the chronic outcomes of resistance exercise on levels of endocannabinoids and related lipids in fibromyalgia (FM).. This study examine the outcomes of a 15-wk person-centered resistance exercise program on plasma levels of the lipid mediators; anandamide, 2-arachidonoylglycerol (2-AG), oleoylethanolamide, palmitoylethanolamide, and stearoylethanolamide (SEA) sampled from 37 women with FM and 33 healthy controls. The associations between clinical scorings of pain, depression, anxiety, fatigue, and muscle strength with levels of these lipid mediators before and after the exercise program are also analyzed.. After the 15-wk exercise program, anandamide levels were significantly increased, and SEA levels significantly decreased in FM. Pain intensity and depression scorings decreased and muscle strength increased, and in a multivariate context, muscle strength was positively associated with 2-AG levels after the resistance exercise program in FM.. The increased anandamide and decreased SEA in women with FM after the 15-wk program might point to a chronic effect of resistance exercise. Pain and depression scorings decreased in the FM group after the program, but no associations between pain, depression, and lipid level changes were assured.

    Topics: Amides; Anxiety; Arachidonic Acids; Depression; Endocannabinoids; Ethanolamines; Exercise Therapy; Fatigue; Female; Fibromyalgia; Glycerides; Humans; Oleic Acids; Pain Management; Palmitic Acids; Polyunsaturated Alkamides; Resistance Training; Stearic Acids

2020
Endocannabinoid concentrations in hair and mental health of unaccompanied refugee minors.
    Psychoneuroendocrinology, 2020, Volume: 116

    Altered activity of the endocannabinoid (EC) system has been linked to dysregulated stress-reactivity and the development of trauma-related psychopathology. The EC system, with its main components anandamide (AEA), 2-arachidonoyl-glycerol (2-AG) and other N-acyl-ethanolamides, is considered to be a buffer system that protects against the negative effects of traumatic experiences on mental health. Recently, the use of hair analyses, a method to gain information on long-term cumulative system activity, has been introduced to the study of ECs. Here, we seek to extend current knowledge on the potential use of hair EC concentrations as a marker of trauma-related psychological symptoms as well as psychological resources. Ninety-one male URM from Syria and Afghanistan (mean age = 17.4 years) living in group homes of the Child Protection Services in Leipzig, Germany, completed assessments on traumatic life events (TLE), PTSD symptoms, depression, anxiety and somatic symptoms as well as on self-efficacy and prosocial behavior. Scalp-near 3 cm hair segments were obtained and EC concentrations quantified using liquid chromatography tandem mass spectrometry. Analyses revealed relatively week and inconsistent associations of hair ECs and psychological symptoms, with only a positive correlation between 2-AG and depression. Concerning prosocial behavior and self-efficacy positive relationships were found with oleoylethanolamide (OEA), stearoylethanolamide (SEA), and palmitoylethanolamide (PEA). Our findings add data concerning the utility of hair EC analyses for PNE research but on a whole fail to reveal a clear association pattern between hair ECs and mental health in URM.

    Topics: Adolescent; Adolescent Behavior; Amides; Behavioral Symptoms; Biomarkers; Child; Child Behavior; Endocannabinoids; Ethanolamines; Hair; Humans; Hypothalamo-Hypophyseal System; Male; Minors; Oleic Acids; Palmitic Acids; Psychological Trauma; Refugees; Self Efficacy; Social Behavior; Stearic Acids

2020
ASP8477, a fatty acid amide hydrolase inhibitor, exerts analgesic effects in rat models of neuropathic and dysfunctional pain.
    European journal of pharmacology, 2020, Aug-15, Volume: 881

    Exogenous cannabinoid receptor agonists are clinically effective for treating chronic pain but frequently cause side effects in the central nervous system. Fatty acid amide hydrolase (FAAH) is a primary catabolic enzyme for anandamide, an endogenous cannabinoid agonist. 3-Pyridyl 4-(phenylcarbamoyl)piperidine-1-carboxylate (ASP8477) is a potent and selective FAAH inhibitor that is orally active and able to increase the brain anandamide level and is effective in rat models of neuropathic and osteoarthritis pain without causing motor coordination deficits. In the present study, we examined the pharmacokinetics and pharmacodynamics, analgesic spectrum in pain models, and the anti-nociceptive mechanism of ASP8477. Single and four-week repeated oral administration of ASP8477 ameliorated mechanical allodynia in spinal nerve ligation rats with similar improvement rates. Further, single oral administration of ASP8477 improved thermal hyperalgesia and cold allodynia in chronic constriction nerve injury rats. ASP8477 also restored muscle pressure thresholds in reserpine-induced myalgia rats. This analgesic effect of ASP8477 persisted for at least 4 h, consistent with the inhibitory effect observed in an ex vivo study using rat brain as well as the increasing effect on oleoylethanolamide and palmitoylethanolamide levels but not the ASP8477 concentration in rat brain. ASP8477 also improved α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-, N-methyl-D-aspartic acid (NMDA)-, prostaglandin E

    Topics: Amides; Amidohydrolases; Analgesics; Animals; Behavior, Animal; Brain; Chronic Pain; Disease Models, Animal; Enzyme Inhibitors; Ethanolamines; Male; Neuralgia; Oleic Acids; Pain Threshold; Palmitic Acids; Piperidines; Pyridines; Rats, Sprague-Dawley

2020
Effects of a High-Protein Diet on Cardiometabolic Health, Vascular Function, and Endocannabinoids-A PREVIEW Study.
    Nutrients, 2020, May-22, Volume: 12, Issue:5

    Topics: Adult; Aged; Amides; Arachidonic Acids; Blood Pressure; Body Mass Index; Cardiovascular Diseases; Cholesterol; Diet, High-Protein; Endocannabinoids; Ethanolamines; Glycerides; Humans; Lipoproteins, LDL; Middle Aged; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Weight Loss

2020
Prediction of preterm labour from a single blood test: The role of the endocannabinoid system in predicting preterm birth in high-risk women.
    European journal of obstetrics, gynecology, and reproductive biology, 2019, Volume: 243

    To determine if plasma concentrations of the N-acylethanolamines (NAEs) N-arachidonoylethanolamine (AEA), N-oleoylethanolamide (OEA) and N-palmitoylethanolamide (PEA) increase in women at high risk for preterm birth (PTB) and whether these could be used to predict preterm delivery and if so, how they compare with current methods.. Prospective cohort study.. A large UK teaching hospital.. 217 pregnant women were recruited between 24 and 34 gestational weeks at 'high-risk' for PTB, recruited from a prematurity prevention clinic or antenatal wards.. Plasma AEA, OEA, and PEA concentrations were measured using ultra-high performance liquid chromatography-tandem mass spectrometry whilst FAAH enzyme activity was measured by fluorometric radiometric assay and CL by ultrasound scan. The clinical usefulness of these measurements were determined by ROC and multivariate analyses.. AEA and PEA concentrations were significantly higher in women who delivered prematurely. An AEA concentration >1.095 nM predicted PTB, the gestational age at delivery and the recruitment to delivery interval (RTDI). A PEA concentration >17.50 nM only predicted PTB; FAAH enzyme activity was not related to these changes. Multivariate analysis (all variables) generated an equation to accurately predict the RTDI.. A single plasma AEA or PEA measurement can predict PTB. A single AEA measurement predicts the gestational age of delivery and the remaining period of pregnancy with reasonable accuracy and better than existing conventional tests thus offering a better window for primary prevention of PTB.

    Topics: Amides; Amidohydrolases; Arachidonic Acids; Cohort Studies; Endocannabinoids; Ethanolamines; Female; Gestational Age; Humans; Obstetric Labor, Premature; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Pregnancy; Premature Birth; Prospective Studies; Risk Assessment; United Kingdom

2019
Peripubertal cannabidiol treatment rescues behavioral and neurochemical abnormalities in the MAM model of schizophrenia.
    Neuropharmacology, 2019, 03-01, Volume: 146

    In agreement with the neurodevelopmental hypothesis of schizophrenia, prenatal exposure of rats to the antimitotic agent methylazoxymethanol acetate (MAM) at gestational day 17 produced long-lasting behavioral alterations such as social withdrawal and cognitive impairment in the social interaction test and in the novel object recognition test, respectively. At the molecular level, an increased cannabinoid receptor type-1 (CB1) mRNA and protein expression, which might be due to reduction in DNA methylation at the gene promoter in the prefrontal cortex (PFC), coincided with deficits in the social interaction test and in the novel object recognition test in MAM rats. Both the schizophrenia-like phenotype and altered transcriptional regulation of CB1 receptors were reversed by peripubertal treatment (from PND 19 to PND 39) with the non-psychotropic phytocannabinoid cannabidiol (30 mg/kg/day), or, in part, by treatment with the cannabinoid CB1 receptor antagonist/inverse agonist AM251 (0.5 mg/kg/day), but not with haloperidol (0.6 mg/kg/day). These results suggest that early treatment with cannabidiol may prevent both the appearance of schizophrenia-like deficits as well as CB1 alterations in the PFC at adulthood, supporting that peripubertal cannabidiol treatment might be protective against MAM insult.

    Topics: Amides; Animals; Arachidonic Acids; Cannabidiol; Disease Models, Animal; Endocannabinoids; Ethanolamines; Female; Glycerides; Hippocampus; Interpersonal Relations; Male; Methylazoxymethanol Acetate; Motor Activity; Oleic Acids; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Prefrontal Cortex; Pregnancy; Prenatal Exposure Delayed Effects; Puberty; Pyrazoles; Rats; Receptor, Cannabinoid, CB1; Recognition, Psychology; RNA, Messenger; Schizophrenia

2019
Impaired anandamide/palmitoylethanolamide signaling in hippocampal glutamatergic neurons alters synaptic plasticity, learning, and emotional responses.
    Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2019, Volume: 44, Issue:8

    Endocannabinoid signaling via anandamide (AEA) is implicated in a variety of neuronal functions and considered a promising therapeutic target for numerous emotion-related disorders. The major AEA degrading enzyme is fatty acid amide hydrolase (FAAH). Genetic deletion and pharmacological inhibition of FAAH reduce anxiety and improve emotional responses and memory in rodents and humans. Complementarily, the mechanisms and impact of decreased AEA signaling remain to be delineated in detail. In the present study, using the Cre/loxP system combined with an adeno-associated virus (AAV)-mediated delivery system, FAAH was selectively overexpressed in hippocampal CA1-CA3 glutamatergic neurons of adult mice. This approach led to specific FAAH overexpression at the postsynaptic site of CA1-CA3 neurons, to increased FAAH enzymatic activity, and, in consequence, to decreased hippocampal levels of AEA and palmitoylethanolamide (PEA), but the levels of the second major endocannabinoid 2-arachidonoyl glycerol (2-AG) and of oleoylethanolamide (OEA) were unchanged. Electrophysiological recordings revealed an enhancement of both excitatory and inhibitory synaptic activity and of long-term potentiation (LTP). In contrast, excitatory and inhibitory long-term depression (LTD) and short-term synaptic plasticity, apparent as depolarization-induced suppression of excitation (DSE) and inhibition (DSI), remained unaltered. These changes in hippocampal synaptic activity were associated with an increase in anxiety-like behavior, and a deficit in object recognition memory and in extinction of aversive memory. This study indicates that AEA is not involved in hippocampal short-term plasticity, or eLTD and iLTD, but modulates glutamatergic transmission most likely via presynaptic sites, and that disturbances in this process impair learning and emotional responses.

    Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Emotions; Endocannabinoids; Ethanolamines; Glutamic Acid; Glycerides; Hippocampus; Learning; Long-Term Potentiation; Long-Term Synaptic Depression; Male; Memory; Mice; Neuronal Plasticity; Neurons; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Synaptic Transmission; Up-Regulation

2019
Serum Endocannabinoid and Mood Changes after Exercise in Major Depressive Disorder.
    Medicine and science in sports and exercise, 2019, Volume: 51, Issue:9

    The endocannabinoid (eCB) system is implicated in the pathophysiology of depression and is responsive to acute exercise in healthy adults.. We aimed to describe acute changes in serum eCB across a prescribed moderate (MOD) and a self-selected/preferred (PREF) intensity exercise session in women with major depressive disorder (MDD) and determine relationships between changes in eCB and mood states.. Women with MDD (n = 17) exercised in separate sessions for 20 min on a cycle ergometer at both MOD or PREF in a within-subjects design. Blood was drawn before and within 10 min after exercise. Serum concentrations of eCB (anandamide [AEA], 2-arachidonoylglycerol) and related lipids (palmitoylethanolamine, oleoylethanolamine, 2-oleoylglycerol) were quantified using stable isotope-dilution, liquid chromatography/mass spectrometry/mass spectrometry. The profile of mood states and state-trait anxiety inventory (state only) were completed before, 10 min and 30 min postexercise.. Significant elevations in AEA (P = 0.013) and oleoylethanolamine (P = 0.024) occurred for MOD (moderate effect sizes: Cohen's d = 0.58 and 0.41, respectively). Significant (P < 0.05) moderate negative associations existed between changes in AEA and mood states for MOD at 10 min (depression, confusion, fatigue, total mood disturbance [TMD] and state anxiety) and 30 min postexercise (confusion, TMD and state anxiety). Significant (P < 0.05) moderate negative associations existed between 2-arachidonoylglycerol and mood states at 10 min (depression and confusion) and 30 min postexercise (confusion and TMD). Changes in eCB or related lipids or eCB-mood relationships were not found for PREF.. Given the broad, moderate-strength relationships between improvements in mood states and eCB increases after MOD, it is plausible that the eCB system contributes to the mood-enhancing effects of prescribed acute exercise in MDD. Alternative mechanisms are likely involved in the positive mood state effects of preferred exercise.

    Topics: Adult; Affect; Amides; Arachidonic Acids; Depressive Disorder, Major; Endocannabinoids; Ethanolamines; Exercise; Female; Glycerides; Humans; Middle Aged; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides

2019
Endocannabinoid and N-acylethanolamide levels in rat brain and spinal cord following systemic dipyrone and paracetamol administration.
    Canadian journal of physiology and pharmacology, 2019, Volume: 97, Issue:11

    The cannabinoid system has been suspected to play a role in the mechanisms of action of dipyrone and paracetamol. Our purpose was to measure the local endocannabinoid and N-acylethanolamide levels in the brain and spinal cord of rats following dipyrone and paracetamol administration. Nociception was assessed 1, 5, and 12 h following drug injections in Wistar rats, using tail-flick and hot-plate tests. The antinociceptive effects of dipyrone (150, 300, and 600 mg/kg, i.p.) and paracetamol (30, 100, and 300 mg/kg, i.p.) were observed. After administration of the highest doses of dipyrone and paracetamol, endocannabinoid (N-arachidonoylethanolamide (AEA), 2-arachidonoylglycerol (2-AG)) and N-acylethanolamide (palmitoylethanolamide (PEA), oleoylethanolamide (OEA)) levels were measured in the periaqueductal gray (PAG), rostral ventromedial medulla (RVM), and spinal cords of rats using tandem mass spectrometry with liquid chromatography. Increased 2-AG levels were observed in the PAG and the RVM 12 h after paracetamol injection; dipyrone exerted no action on 2-AG levels. Analgesic administrations led to a reduction in AEA levels in the RVM and spinal cord; similar decreases in PEA and OEA levels were observed in the RVM and the spinal cord. Dipyrone and paracetamol administrations appear to exert complicated effects on endocannabinoid and N-acylethanolamide levels in rats.

    Topics: Acetaminophen; Amides; Analgesics; Animals; Brain; Dipyrone; Endocannabinoids; Ethanolamines; Male; Nociception; Oleic Acids; Palmitic Acids; Rats, Wistar; Spinal Cord

2019
Determination of endocannabinoids and endocannabinoid-like substances in human K3EDTA plasma - LC-MS/MS method validation and pre-analytical characteristics.
    Talanta, 2019, Nov-01, Volume: 204

    The determination of endocannabinoids and endocannabinoid-like substances in biological human samples is a vibrant field of research with great significance due to postulated relevance of these substances in diseases such as Alzheimer's disease, multiple sclerosis, cancer and cardiovascular diseases. For a possible use as biomarker in early prediction or diagnosis of a disease as well as examination of a successful treatment, the valid determination of the analytes in common accessible human samples, such as plasma or serum, is of great importance. A method for the determination of arachidonoyl ethanolamide, oleoyl ethanolamide, palmitoyl ethanolamide, 1-arachidonoyl glycerol and 2-arachidonoyl glycerol in human K3EDTA plasma using liquid-liquid-extraction in combination with liquid chromatography-tandem-mass spectrometry has been developed and validated for the quantification of the aforementioned analytes. Particular emphasis was placed on the chromatographic separation of the isomers 1-arachidonoyl glycerol and 2-arachidonoyl glycerol, arachidonoyl ethanolamide and O-arachidonoyl ethanolamine (virodhamine) as well as oleoyl ethanolamide and vaccenic acid ethanolamide. During the validation process, increasing concentrations of 1-arachidonoyl glycerol and 2-arachidonoyl glycerol while storing plasma samples were observed. In-depth investigation of pre-analytical sample handling revealed rising concentrations for both analytes in plasma and for arachidonoyl ethanolamide, oleoyl ethanolamide and palmitoyl ethanolamide in whole blood, dependent on the period and temperature of storage. Prevention of the increase in concentration was not possible, raising the question whether human K3EDTA plasma is suitable for the determination of endocannabinoids and endocannabinoid-like substances. Especially the common practice to calculate the concentration of 2-arachidonoyl glycerol as sum of 1-arachidonoyl glycerol and 2-arachidonoyl glycerol is highly questionable because the concentrations of both analytes increase unequally while storing the plasma samples in the fridge.

    Topics: Amides; Anticoagulants; Arachidonic Acids; Chromatography, High Pressure Liquid; Edetic Acid; Endocannabinoids; Ethanolamines; Glycerides; Humans; Liquid-Liquid Extraction; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Specimen Handling; Tandem Mass Spectrometry

2019
FAAH, but not MAGL, inhibition modulates acute TLR3-induced neuroimmune signaling in the rat, independent of sex.
    Journal of neuroscience research, 2018, Volume: 96, Issue:6

    Toll-like receptor (TLR)3 is a key component of the innate immune response to viral infection. The present study firstly examined whether sex differences exist in TLR3-induced inflammatory, endocrine, and sickness responses. The data revealed that TLR3-induced expression of interferon- or NFkB-inducible genes (IFN-α/β, IP-10, or TNF-α), either peripherally (spleen) or centrally (hypothalamus), did not differ between male and female rats, with the exception of TLR3-induced IFN-α expression in the spleen of female, but not male, rats 8 hr post TLR3 activation. Furthermore, TLR3 activation increased plasma corticosterone levels, induced fever, and reduced locomotor activity and body weight - effects independent of sex. Thus, the acute-phase inflammatory, endocrine, and sickness responses to TLR3 activation exhibit minimal sex-related differences. A further aim of this study was to examine whether enhancing endocannabinoid tone - namely, 2-arachidonylglycerol (2-AG) or N-arachidonoylethanolamine (AEA), exhibited similar effects on TLR3-induced inflammatory responses in male versus female rats. Systemic administration of the monoacylglycerol lipase (MAGL) inhibitor MJN110 and subsequent increases in 2-AG levels did not alter the TLR3-induced increase in IP-10, IRF7, or TNF-α expression in the spleen or the hypothalamus of male or female rats. In contrast, the fatty acid amide hydrolase (FAAH) inhibitor URB597 increased levels of AEA and related N-acylethanolamines, an effect associated with the attenuation of TLR3-induced inflammatory responses in the hypothalamus, but not the spleen, of male and female rats. These data support a role for FAAH, but not MAGL, substrates in the modulation of TLR3-induced neuroinflammatory responses, effects independent of sex.

    Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Body Temperature; Carbamates; Chemokine CXCL10; Corticosterone; Endocannabinoids; Estradiol; Ethanolamines; Female; Glycerides; Immunologic Factors; Interferons; Male; Monoacylglycerol Lipases; NF-kappa B; Oleic Acids; Palmitic Acids; Poly I-C; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Sex Factors; Signal Transduction; Succinimides; Toll-Like Receptor 3

2018
Increased plasma oleoylethanolamide and palmitoleoylethanolamide levels correlate with inflammatory changes in alcohol binge drinkers: the case of HMGB1 in women.
    Addiction biology, 2018, Volume: 23, Issue:6

    Alcohol binge drinking is a heavy pattern of alcohol consumption increasingly used by young people. In a previous study, we reported that young drinkers with a 2-year history of binge alcohol consumption had an overactivation of the innate immune system and peripheral inflammation when compared with controls. In the present study, we measured several biolipids that are fatty acid derivatives belonging to the acylethanolamide or 2-acylglycerol families in the plasma of the same subjects (n = 42; 20 men and 22 women). We found that during abstinence, alcohol binge drinkers had elevated plasma levels of oleoylethanolamide, palmitoleoylethanolamide, arachidonoylethanolamide, dihomo-γ-linolenoyl ethanolamide and linoleoyl ethanolamide, which positively correlated with changes in the mRNA expression of key inflammatory markers in peripheral blood mononuclear cells, such as toll-like receptors (TLR4), pro-inflammatory cytokines/chemokines interleukin-1 beta, interleukin-6 and monocyte chemoattractant protein-1, and cyclooxygenase-2. Additionally, plasma oleoylethanolamide positively correlated with plasma levels of high mobility group box-1, which is a danger-associated molecular pattern and an endogenous TLR4 agonist, specifically in female alcohol binge drinkers. No changes were observed in 2-acylglycerols in alcohol binge drinkers, although sex-related differences in these bioactive lipids as well as in palmitoleoylethanolamide and docosatetraenoylethanolamide levels were detected. These results extend the previous clinical findings observed in patients diagnosed with long-term alcohol use disorder to young users and suggest a prominent role for these lipids in the response to acute alcohol exposure.

    Topics: Amides; Anthropometry; Binge Drinking; Biomarkers; Case-Control Studies; Central Nervous System Depressants; Endocannabinoids; Ethanol; Ethanolamines; Female; Glycerides; HMGB1 Protein; Humans; Inflammation; Liver; Male; Oleic Acids; Palmitic Acids; Young Adult

2018
The selective reversible FAAH inhibitor, SSR411298, restores the development of maladaptive behaviors to acute and chronic stress in rodents.
    Scientific reports, 2018, 02-05, Volume: 8, Issue:1

    Enhancing endogenous cannabinoid (eCB) signaling has been considered as a potential strategy for the treatment of stress-related conditions. Fatty acid amide hydrolase (FAAH) represents the primary degradation enzyme of the eCB anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). This study describes a potent reversible FAAH inhibitor, SSR411298. The drug acts as a selective inhibitor of FAAH, which potently increases hippocampal levels of AEA, OEA and PEA in mice. Despite elevating eCB levels, SSR411298 did not mimic the interoceptive state or produce the behavioral side-effects (memory deficit and motor impairment) evoked by direct-acting cannabinoids. When SSR411298 was tested in models of anxiety, it only exerted clear anxiolytic-like effects under highly aversive conditions following exposure to a traumatic event, such as in the mouse defense test battery and social defeat procedure. Results from experiments in models of depression showed that SSR411298 produced robust antidepressant-like activity in the rat forced-swimming test and in the mouse chronic mild stress model, restoring notably the development of inadequate coping responses to chronic stress. This preclinical profile positions SSR411298 as a promising drug candidate to treat diseases such as post-traumatic stress disorder, which involves the development of maladaptive behaviors.

    Topics: Acute Disease; Amides; Amidohydrolases; Animals; Anti-Anxiety Agents; Anxiety Disorders; Arachidonic Acids; Cannabinoid Receptor Agonists; Carbamates; Chronic Disease; Dioxanes; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Female; Gene Expression; Male; Mice; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Rats, Sprague-Dawley; Receptors, Cannabinoid; Stress, Psychological

2018
Treatment of anorexia nervosa with palmitoylethanoamide.
    Medical hypotheses, 2018, Volume: 116

    Topics: Amides; Animals; Anorexia Nervosa; Arachidonic Acids; Dietary Fats; Dietary Supplements; Endocannabinoids; Ethanolamines; Feeding Behavior; Humans; Lipids; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Rats; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2

2018
Bioactive lipids ALIAmides differentially modulate inflammatory responses of distinct subsets of primary human T lymphocytes.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2018, Volume: 32, Issue:10

    Autacoid local injury antagonist amides (ALIAmides) are a family of endogenous bioactive acyl ethanolamides that include the renowned palmitoyl ethanolamide (PEA), oleoyl ethanolamide (OEA), and stearoyl ethanolamide (SEA), and that are involved in several biologic processes such as nociception, lipid metabolism, and inflammation. The role of ALIAmides in the control of inflammatory processes has recently gained much attention and prompted the use of these molecules or their analogs, and the pharmacologic manipulation of their endogenous levels, as plausible therapeutic strategies in the treatment of several chronic inflammatory conditions. Since chronic inflammation is mainly driven by cells of adaptive immunity, particularly T lymphocytes, we aimed at investigating whether such bioactive lipids could directly modulate T-cell responses. We found that OEA, PEA, and eicosatrienoyl ethanolamide (ETEA) could directly inhibit both T-cell responses by reducing their production of TNF-α and IFN-γ from CD8 T cells and TNF-α, IFN-γ and IL-17 from CD4 T cells. Furthermore, neither SEA nor docosatrienoyl ethanolamide (DTEA) could affect cytokine production from both T cell subsets. Interestingly, unlike OEA and ETEA, PEA was also able to enhance de novo generation of forkhead box P3 (FoxP3)-expressing regulatory T cells from CD4-naive T cells. Our findings show for the first time that specific ALIAmides can directly affect different T-cell subsets, and provide proof of their anti-inflammatory role in chronic inflammation, ultimately suggesting that these bioactive lipids could offer novel tools for the management of T-cell dependent chronic inflammatory diseases.-Chiurchiù, V., Leuti, A., Smoum, R., Mechoulam, R., Maccarrone, M. Bioactive lipids ALIAmides differentially modulate inflammatory responses of distinct subsets of primary human T lymphocytes.

    Topics: Amides; CD4-Positive T-Lymphocytes; CD8-Positive T-Lymphocytes; Cytokines; Endocannabinoids; Ethanolamines; Humans; Inflammation; Oleic Acids; Palmitic Acids; Stearic Acids

2018
Palmitoylethanolamide prevents neuroinflammation, reduces astrogliosis and preserves recognition and spatial memory following induction of neonatal anoxia-ischemia.
    Psychopharmacology, 2018, Volume: 235, Issue:10

    Neonatal anoxia-ischemia (AI) particularly affects the central nervous system. Despite the many treatments that have been tested, none of them has proven to be completely successful. Palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) are acylethanolamides that do not bind to CB1 or CB2 receptors and thus they do not present cannabinoid activity. These molecules are agonist compounds of peroxisome proliferator-activator receptor alpha (PPARα), which modulates the expression of different genes that are related to glucose and lipid metabolism, inflammation, differentiation and proliferation.. In the present study, we analyzed the effects that the administration of PEA or OEA, after a neonatal AI event, has over different areas of the hippocampus.. To this end, 7-day-old rats were subjected to AI and then treated with vehicle, OEA (2 or 10 mg/kg) or PEA (2 or 10 mg/kg). At 30 days of age, animals were subjected to behavioral tests followed by immunohistochemical studies.. Results showed that neonatal AI was associated with decreased locomotion, as well as recognition and spatial memory impairments. Furthermore, these deficits were accompanied with enhanced neuroinflammation and astrogliosis, as well as a decreased PPARα expression. PEA treatment was able to prevent neuroinflammation, reduce astrogliosis and preserve cognitive functions.. These results indicate that the acylethanolamide PEA may play an important role in the mechanisms underlying neonatal AI, and it could be a good candidate for further studies regarding neonatal AI treatments.

    Topics: Amides; Animals; Disease Models, Animal; Endocannabinoids; Ethanolamines; Female; Glucose; Hippocampus; Hypoxia-Ischemia, Brain; Lipid Metabolism; Locomotion; Oleic Acids; Palmitic Acids; PPAR alpha; Rats; Rats, Sprague-Dawley; Recognition, Psychology; Spatial Memory

2018
Satiety Factors Oleoylethanolamide, Stearoylethanolamide, and Palmitoylethanolamide in Mother's Milk Are Strongly Associated with Infant Weight at Four Months of Age-Data from the Odense Child Cohort.
    Nutrients, 2018, Nov-13, Volume: 10, Issue:11

    Regulation of appetite and food intake is partly regulated by

    Topics: Adult; Aging; Amides; Body Weight; Breast Feeding; Cohort Studies; Denmark; Endocannabinoids; Ethanolamines; Female; Humans; Infant; Milk, Human; Oleic Acids; Palmitic Acids; Stearic Acids

2018
Alterations of anti-inflammatory lipids in plasma from women with chronic widespread pain - a case control study.
    Lipids in health and disease, 2017, Jun-12, Volume: 16, Issue:1

    Chronic widespread pain conditions (CWP) such as the pain associated with fibromyalgia syndrome (FMS) are significant health problems with unclear aetiology. Although CWP and FMS can alter both central and peripheral pain mechanisms, there are no validated markers for such alterations. Pro- and anti-inflammatory components of the immune system such as cytokines and endogenous lipid mediators could serve as systemic markers of alterations in chronic pain. Lipid mediators associated with anti-inflammatory qualities - e.g., oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and stearoylethanolamide (SEA) - belong to N-acylethanolamines (NAEs). Previous studies have concluded that these lipid mediators may modulate pain and inflammation via the activation of peroxisome proliferator activating receptors (PPARs) and the activation of PPARs may regulate gene transcriptional factors that control the expression of distinct cytokines.. This study investigates NAEs and cytokines in 17 women with CWP and 21 healthy controls. Plasma levels of the anti-inflammatory lipids OEA, PEA, and SEA, the pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-8, and the anti-inflammatory cytokine IL-10 were investigated. T-test of independent samples was used for group comparisons. Bivariate correlation analyses, and multivariate regression analysis were performed between lipids, cytokines, and pain intensity of the participants.. Significantly higher levels of OEA and PEA in plasma were found in CWP. No alterations in the levels of cytokines existed and no correlations between levels of lipids and cytokines were found.. We conclude that altered levels of OEA and PEA might indicate the presence of systemic inflammation in CWP. In addition, we believe our findings contribute to the understanding of the biochemical mechanisms involved in chronic musculoskeletal pain.

    Topics: Adult; Aged; Amides; Anti-Inflammatory Agents; Chronic Pain; Cytokines; Endocannabinoids; Ethanolamines; Female; Fibromyalgia; Genetic Association Studies; Humans; Inflammation; Lipids; Middle Aged; Oleic Acids; Palmitic Acids; Stearic Acids

2017
Serum endocannabinoids in assessing pain in patients with chronic pancreatitis and in those with pancreatic ductal adenocarcinoma.
    Scandinavian journal of gastroenterology, 2017, Volume: 52, Issue:10

    The endocannabinoid system plays a substantial role in analgesia.. To analyze N-arachidonoylethanolamine (AEA), N-oleoylethanolamine (OEA), linoleoyl ethanolamide (LEA), α-linoleoyl ethanolamine (α-LNEA), N-palmitoylethanolamine (PEA) and N-stearoyl ethanolamine (SEA) in two groups of patients having chronic pancreatic diseases.. Twenty-six patients with chronic pancreatitis, 26 patients with pancreatic ductal adenocarcinoma and 36 healthy subjects were studied. The visual analogic scale (VAS) was used for assessing pain immediately before the venipuncture to obtain blood in all subjects. Six endocannabinoids were measured in serum of the patients enrolled.. Only OEA, LEA and PEA serum levels were significantly higher in patients with pain as compared to those without. Using the cutoff values, the sensitivity and specificity of the various endocannabinoids in evaluating pain in patients with chronic pancreatitis and in those with pancreatic ductal adenocarcinoma were: 44.2% and 95.6% for AEA, 83.7% and 73.3% for LEA, 88.4% and 91.1% for LNEA, 81.4% and 82.2% for OEA, 81.4% and 88.9% for PEA, 86.0% and 88.9% for SEA, respectively.. Endocannabinoids are not useful in assessing pain in patients with chronic pancreatic diseases and they cannot replace a simple method such as VAS for assessing the pain and its intensity.

    Topics: Abdominal Pain; Adolescent; Adult; Aged; Aged, 80 and over; Amides; Arachidonic Acids; Cancer Pain; Carcinoma, Pancreatic Ductal; Case-Control Studies; Endocannabinoids; Ethanolamines; Female; Humans; Linoleic Acids; Male; Middle Aged; Oleic Acids; Pain Measurement; Palmitic Acids; Pancreatic Neoplasms; Pancreatitis, Chronic; Polyunsaturated Alkamides; Predictive Value of Tests; ROC Curve; Stearic Acids; Young Adult

2017
Association Between Plasma N-Acylethanolamides and High Hemoglobin Concentration in Southern Peruvian Highlanders.
    High altitude medicine & biology, 2017, Volume: 18, Issue:4

    Alarcón-Yaquetto, Dulce E., Lidia Caballero, and Gustavo F. Gonzales. Association between plasma N-acylethanolamides and high hemoglobin concentration in Southern Peruvian highlanders. High Alt Med Biol 18:322-329, 2017.-High-altitude (HA) hypoxia is a stressful condition endured by organisms through different mechanisms. Failing to adapt to chronic HA exposure leads to a disease called chronic mountain sickness (CMS) characterized by excessive erythrocytosis (hemoglobin [Hb] ≥19 g/dL for women and ≥21 g/dL for men). Genes encoding for peroxisome proliferator-activated receptor (PPAR) subunits α and γ have been proposed as candidate genes for HA adaptation. N-acylethanolamides (NAEs) are endogenous fatty acid substances that bind to PPAR-α and -γ. NAEs are also able to modulate the endocannabinoid system, a signaling pathway activated in physiological stressful conditions. In the frame of a metabolomic study, we measured plasma levels of four NAEs: palmitoylethanolamide (PEA), oleoylethanolamide (OEA), stearoyl ethanolamide (SEA), and linoleoyl ethanolamide (LEA) in natives from Puno (3830 m), a city located in the Peruvian Southern Andes, and Lima (150 m). All NAEs were significantly higher in the HA population (p < 0.001, q < 0.001). Subjects with higher NAE values were those with higher Hb concentration and lower pulse oxygen saturation. However, there was no association between NAEs and CMS score. Our results suggest that PEA and OEA could be involved in physiological regulation following long-term HA exposure.

    Topics: Adult; Altitude; Altitude Sickness; Amides; Chronic Disease; Endocannabinoids; Ethanolamines; Fatty Acids; Female; Hemoglobins; Humans; Hypoxia; Indians, South American; Linoleic Acids; Male; Oleic Acids; Oxygen; Palmitic Acids; Peru; Polyunsaturated Alkamides; Stearic Acids

2017
Plasma concentrations of oleoylethanolamide and other acylethanolamides are altered in alcohol-dependent patients: effect of length of abstinence.
    Addiction biology, 2017, Volume: 22, Issue:5

    Acylethanolamides are a family of endogenous lipid mediators that are involved in physiological and behavioral processes associated with addiction. Recently, oleoylethanolamide (OEA) has been reported to reduce alcohol intake and relapse in rodents but the contribution of OEA and other acylethanolamides in alcohol addiction in humans is unknown. The present study is aimed to characterize the plasma acylethanolamides in alcohol dependence. Seventy-nine abstinent alcohol-dependent subjects (27 women) recruited from outpatient treatment programs and age-/sex-/body mass-matched healthy volunteers (28 women) were clinically assessed with the diagnostic interview PRISM according to the DSM-IV-TR after blood extraction for quantification of acylethanolamide concentrations in the plasma. Our results indicate that all acylethanolamides were significantly increased in alcohol-dependent patients compared with control subjects (p < 0.001). A logistic model based on these acylethanolamides was developed to distinguish alcohol-dependent patients from controls and included OEA, arachidonoylethanolamide (AEA) and docosatetraenoylethanolamide (DEA), providing a high discriminatory power according to area under the curve [AUC = 0.92 (95%CI: 0.87-0.96), p < 0.001]. Additionally, we found a significant effect of the duration of alcohol abstinence on the concentrations of OEA, AEA and DEA using a regression model (p < 0.05, p < 0.01 and p < 0.001, respectively), which was confirmed by a negative correlation (rho = -0.31, -0.40 and -0.44, respectively). However, acylethanolamides were not influenced by the addiction alcohol severity, duration of problematic alcohol use or diagnosis of psychiatric comorbidity. Our results support the preclinical studies and suggest that OEA, AEA and DEA are altered in alcohol-dependence during abstinence and that might act as potential markers for predicting length of alcohol abstinence.

    Topics: Adult; Alcohol Abstinence; Alcoholism; Amides; Arachidonic Acids; Case-Control Studies; Dehydroepiandrosterone; Endocannabinoids; Ethanolamines; Female; Humans; Male; Middle Aged; Oleic Acids; Palmitic Acids; Polyethylene Glycols; Polyunsaturated Alkamides; Stearic Acids; Time Factors

2017
Oleoylethanolamine and palmitoylethanolamine modulate intestinal permeability in vitro via TRPV1 and PPARα.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2017, Volume: 31, Issue:2

    Topics: Amides; Caco-2 Cells; Cytokines; Cytoskeleton; Ethanolamines; Gene Expression Regulation; Humans; Intestines; Oleic Acids; Palmitic Acids; Permeability; PPAR alpha; Signal Transduction; TRPV Cation Channels

2017
Responses of peripheral endocannabinoids and endocannabinoid-related compounds to hedonic eating in obesity.
    European journal of nutrition, 2016, Volume: 55, Issue:4

    Hedonic eating occurs independently from homeostatic needs prompting the ingestion of pleasurable foods that are typically rich in fat, sugar and/or salt content. In normal weight healthy subjects, we found that before hedonic eating, plasma levels of 2-arachidonoylglycerol (2-AG) were higher than before nonhedonic eating, and although they progressively decreased after food ingestion in both eating conditions, they were significantly higher in hedonic eating. Plasma levels of anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), instead, progressively decreased in both eating conditions without significant differences. In this study, we investigated the responses of AEA, 2-AG, OEA and PEA to hedonic eating in obese individuals.. Peripheral levels of AEA, 2-AG, OEA and PEA were measured in 14 obese patients after eating favourite (hedonic eating) and non-favourite (nonhedonic eating) foods in conditions of no homeostatic needs.. Plasma levels of 2-AG increased after eating the favourite food, whereas they decreased after eating the non-favourite food, with the production of the endocannabinoid being significantly enhanced in hedonic eating. Plasma levels of AEA decreased progressively in nonhedonic eating, whereas they showed a decrease after the exposure to the favourite food followed by a return to baseline values after eating it. No significant differences emerged in plasma OEA and PEA responses to favourite and non-favourite food.. Present findings compared with those obtained in our previously studied normal weight healthy subjects suggest deranged responses of endocannabinoids to food-related reward in obesity.

    Topics: Adult; Amides; Arachidonic Acids; Body Mass Index; Dietary Carbohydrates; Dietary Fats; Dietary Proteins; Endocannabinoids; Energy Intake; Ethanolamines; Feeding Behavior; Female; Glycerides; Humans; Male; Middle Aged; Nutritive Value; Obesity; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Satiation; Young Adult

2016
Effects of chronic exercise on the endocannabinoid system in Wistar rats with high-fat diet-induced obesity.
    Journal of physiology and biochemistry, 2016, Volume: 72, Issue:2

    The endocannabinoid system is dysregulated during obesity in tissues involved in the control of food intake and energy metabolism. We examined the effect of chronic exercise on the tissue levels of endocannabinoids (eCBs) and on the expression of genes coding for cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2) (Cnr1 and Cnr2, respectively) in the subcutaneous (SAT) and visceral adipose tissues and in the soleus and extensor digitorim longus (EDL) muscles, in rats fed with standard or high-fat diet. Twenty-eight male Wistar rats were placed on high-fat diet or standard diet (HFD and Ctl groups, respectively) during 12 weeks whereafter half of each group was submitted to an exercise training period of 12 weeks (HFD + training and Ctl + training). Tissue levels of eCBs were measured by LC-MS while expressions of genes coding for CB1 and CB2 receptors were investigated by qPCR. High-fat diet induced an increase in anandamide (AEA) levels in soleus and EDL (p < 0.02). In soleus of the HFD group, these changes were accompanied by elevated Cnr1 messenger RNA (mRNA) levels (p < 0.05). In EDL, exercise training allowed to reduce significantly this diet-induced AEA increase (p < 0.005). 2-Arachidonoylglycerol (2-AG) levels were decreased and increased by high-fat diet in SAT and EDL, respectively (p < 0.04), but not affected by exercise training. Unlike the HFD + training group, 2-AG levels in soleus were also decreased in the HFD group compared to Ctl (p < 0.04). The levels of eCBs and Cnr1 expression are altered in a tissue-specific manner following a high-fat diet, and chronic exercise reverses some of these alterations.

    Topics: Amides; Animals; Arachidonic Acids; Body Composition; Diet, High-Fat; Endocannabinoids; Ethanolamines; Gene Expression Regulation; Glycerides; Hyperglycemia; Intra-Abdominal Fat; Male; Motor Activity; Muscle, Skeletal; Obesity; Oleic Acids; Organ Specificity; Palmitic Acids; Polyunsaturated Alkamides; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Subcutaneous Fat, Abdominal; TRPV Cation Channels; Weight Gain

2016
Elevated Systemic Levels of Endocannabinoids and Related Mediators Across the Menstrual Cycle in Women With Endometriosis.
    Reproductive sciences (Thousand Oaks, Calif.), 2016, Volume: 23, Issue:8

    Cannabinoids and modulators of the endocannabinoid system affect specific mechanisms that are critical to the establishment and development of endometriosis. The aim of this study was to measure the systemic levels of endocannabinoids and related mediators in women with and without endometriosis and to investigate whether such levels correlated with endometriosis-associated pain. Plasma and endometrial biopsies were obtained from women with a laparoscopic diagnosis of endometriosis (n = 27) and no endometrial pathology (n = 29). Plasma levels of endocannabinoids (N-arachidonoylethanolamine [AEA] and 2-arachidonoylglycerol [2-AG]) and related mediators (N-oleoylethanolamine [OEA] and N-palmitoylethanolamine [PEA]), messenger RNA expression of some of their receptors (cannabinoid receptor type 1 [CB1], CB2, transient receptor potential vanilloid type [TRPV1]), and the enzymes involved in the synthesis (N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D [NAPE-PLD]) and degradation (fatty acid amide hydrolase 1 [FAAH]) of AEA, OEA, and PEA were evaluated in endometrial stromal cells. The systemic levels of AEA, 2-AG, and OEA were elevated in endometriosis in the secretory phase compared to controls. The expression of CB1 was higher in secretory phase endometrial stromal cells of controls versus endometriosis. Similar expression levels of CB2, TRPV1, NAPE-PLD, and FAAH were detected in controls and endometriosis. Patients with moderate-to-severe dysmenorrhea and dyspareunia showed higher AEA and PEA levels than those with low-to-moderate pain symptoms, respectively. The association of increased circulating AEA and 2-AG with decreased local CB1 expression in endometriosis suggests a negative feedback loop regulation, which may impair the capability of these mediators to control pain. These preliminary data suggest that the pharmacological manipulation of the action or levels of these mediators may offer an alternative option for the management of endometriosis-associated pain.

    Topics: Adult; Amides; Amidohydrolases; Arachidonic Acids; Endocannabinoids; Endometriosis; Ethanolamines; Female; Glycerides; Humans; Menstrual Cycle; Middle Aged; Oleic Acids; Palmitic Acids; Phospholipase D; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; RNA, Messenger; Stromal Cells; TRPV Cation Channels; Young Adult

2016
Endocannabinoid concentrations in hair are associated with PTSD symptom severity.
    Psychoneuroendocrinology, 2016, Volume: 67

    The endocannabinoid system has been implicated in the regulation of the stress response, fear memory formation, and inflammatory processes. Posttraumatic stress disorder (PTSD) can result from exposure to extreme stress and is characterized by strong, associative memories for the traumatic events experienced. Furthermore, an elevated physical disease risk has been observed in PTSD, likely to be mediated by inflammatory processes. Therefore, altered endocannabinoid regulation can be expected in individuals with PTSD. However, attempts to assess PTSD-associated differences in the endocannabinoid system from human blood samples have provided inconsistent results, possibly due to fluctuating levels of endocannabinoids. In hair, these neuromodulators are accumulated over time and thus give access to a more stable and reliable assessment. We therefore investigated PTSD-associated differences in hair concentrations of endocannabinoids (N-acyl-ethanolamides palmitoylethanolamide [PEA], oleoylethanolamide [OEA] and stearoylethanolamide [SEA]) in 38 rebel war survivors from Northern Uganda suffering from PTSD and N=38 healthy rebel war survivors without current and lifetime PTSD. PTSD diagnosis and symptom severity were assessed in structured clinical interviews employing the Posttraumatic Diagnostic Scale (PDS). A significant group difference was observed for OEA, with PTSD patients showing reduced hair concentrations. Regression analyses further revealed strong negative relationships between all investigated N-acyl-ethanolamides and symptom severity of PTSD. The observed reductions in endocannabinoids might account for the increased inflammatory state as well as for the failure to extinguish fear memories observed in PTSD. Our findings add to the accumulating evidence suggesting the endocannabinoid system as a target for pharmacological enhancement of exposure-based psychotherapy for PTSD.

    Topics: Adult; Amides; Case-Control Studies; Endocannabinoids; Ethanolamines; Female; Hair; Humans; Male; Oleic Acids; Palmitic Acids; Stearic Acids; Stress Disorders, Post-Traumatic; Uganda; Veterans; Young Adult

2016
Endovanilloid control of pain modulation by the rostroventromedial medulla in an animal model of diabetic neuropathy.
    Neuropharmacology, 2016, Volume: 107

    The involvement of transient receptor vanilloid type-1 (TRPV1) channels in pain modulation by the brain remains understudied. The rostroventromedial medulla (RVM) plays a key role in conveying to the spinal cord pain modulatory influences triggered in higher brain centres, with co-existence of inhibitory (antinociceptive) and facilitatory (pronociceptive) effects. In spite of some reports of TRPV1 expression in the RVM, it remains unknown if endovanilloid signalling plays a direct role in local pain modulation. Here we used a model of diabetic neuropathy, the streptozotocin (STZ)-diabetic rat, to study the role of endovanilloid signalling in RVM-mediated pain modulation during chronic pain. Four weeks after diabetes induction, the levels of TRPV1 mRNA and fatty acid amide hydrolase (FAAH), a crucial enzyme for endovanilloid catabolism, in the RVM of STZ-diabetic rats were higher than control. The RVM of STZ-diabetic rats presented decreased levels of several TRPV1 endogenous ligands, namely anandamide (AEA), palmitoylethanolamide (PEA) and oleoylethanolamide (OEA). Administration of capsaicin (a TRPV1 agonist) into the RVM decreased nociceptive behavioural responses in the inflammatory phase of the formalin test (phase 2). These findings suggest that diabetic neuropathy induces plastic changes of RVM endovanilloid signalling, indicating that TRPV1 may be a putative target for pain modulation in this chronic pain condition.

    Topics: Amides; Amidohydrolases; Analgesics, Non-Narcotic; Animals; Arachidonic Acids; Capsaicin; Chronic Pain; Diabetes Mellitus, Experimental; Diabetic Neuropathies; Endocannabinoids; Ethanolamines; Formaldehyde; Male; Medulla Oblongata; Nociceptive Pain; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Rats, Wistar; RNA, Messenger; TRPV Cation Channels

2016
Endocannabinoid-related lipids are increased during an episode of cyclic vomiting syndrome.
    Neurogastroenterology and motility, 2016, Volume: 28, Issue:9

    The endocannabinoid system and the hypothalamic-pituitary-adrenal axis are important neuromodulators of nausea and vomiting. This led us to hypothesize that patients with cyclic vomiting syndrome (CVS) have lower serum endocannabinoids (eCBs) and higher salivary cortisol and alpha amylase.. Serum eCBs and related lipids, N-oleoylethanolamine (OEA) and N-palmitoylethanolamide (PEA), and salivary cortisol, and alpha amylase (index of sympathetic nervous system activity) were measured in 22 CVS patients (age 40 ± 11, female = 17) in the well and sick phases and 12 matched controls (age 37 ± 12, female = 10).. Contrary to our hypothesis, serum concentrations of the eCBs were not different among the study groups. However, serum concentrations of OEA and PEA were significantly higher during the sick than well phase in CVS patients (p = 0.001 and p = 0.04). There were positive correlations between serum PEA and nausea scores in the sick phase (Pearson's rho = 0.48, p = 0.036) and between serum OEA and poor sleep quality in patients (Pearson's rho = 0.7, p = 0.0005). Salivary cortisol and alpha amylase were not different between patients and controls, but subgroup analysis revealed that both were significantly higher in marijuana users compared to non-users during the sick phase (p = 0.04 and 0.03, respectively).. These data demonstrate that eCB-related lipids, OEA and PEA, are mobilized in the sick phase of CVS and are positively correlated with several of the symptoms of a CVS episode. These data also suggest the hypothesis that chronic marijuana use results in enhanced stress responses during CVS.

    Topics: Adult; Amides; Endocannabinoids; Ethanolamines; Female; Humans; Hydrocortisone; Hypothalamo-Hypophyseal System; Male; Middle Aged; Oleic Acids; Palmitic Acids; Pituitary-Adrenal System; Saliva; Salivary alpha-Amylases; Severity of Illness Index; Vomiting

2016
Second-Generation Non-Covalent NAAA Inhibitors are Protective in a Model of Multiple Sclerosis.
    Angewandte Chemie (International ed. in English), 2016, 09-05, Volume: 55, Issue:37

    Palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) are endogenous lipid mediators that suppress inflammation. Their actions are terminated by the intracellular cysteine amidase, N-acylethanolamine acid amidase (NAAA). Even though NAAA may offer a new target for anti-inflammatory therapy, the lipid-like structures and reactive warheads of current NAAA inhibitors limit the use of these agents as oral drugs. A series of novel benzothiazole-piperazine derivatives that inhibit NAAA in a potent and selective manner by a non-covalent mechanism are described. A prototype member of this class (8) displays high oral bioavailability, access to the central nervous system (CNS), and strong activity in a mouse model of multiple sclerosis (MS). This compound exemplifies a second generation of non-covalent NAAA inhibitors that may be useful in the treatment of MS and other chronic CNS disorders.

    Topics: Administration, Oral; Amides; Amidohydrolases; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Mice; Molecular Structure; Multiple Sclerosis; Oleic Acids; Palmitic Acids; Structure-Activity Relationship

2016
Palmitoylethanolamide, a naturally occurring lipid, is an orally effective intestinal anti-inflammatory agent.
    British journal of pharmacology, 2015, Volume: 172, Issue:1

    Palmitoylethanolamide (PEA) acts via several targets, including cannabinoid CB1 and CB2 receptors, transient receptor potential vanilloid type-1 (TRPV1) ion channels, peroxisome proliferator-activated receptor alpha (PPAR α) and orphan G protein-coupled receptor 55 (GRR55), all involved in the control of intestinal inflammation. Here, we investigated the effect of PEA in a murine model of colitis.. Colitis was induced in mice by intracolonic administration of dinitrobenzenesulfonic acid (DNBS). Inflammation was assessed by evaluating inflammatory markers/parameters and by histology; intestinal permeability by a fluorescent method; colonic cell proliferation by immunohistochemistry; PEA and endocannabinoid levels by liquid chromatography mass spectrometry; receptor and enzyme mRNA expression by quantitative RT-PCR.. DNBS administration caused inflammatory damage, increased colonic levels of PEA and endocannabinoids, down-regulation of mRNA for TRPV1 and GPR55 but no changes in mRNA for CB1 , CB2 and PPARα. Exogenous PEA (i.p. and/or p.o., 1 mg·kg(-1) ) attenuated inflammation and intestinal permeability, stimulated colonic cell proliferation, and increased colonic TRPV1 and CB1 receptor expression. The anti-inflammatory effect of PEA was attenuated or abolished by CB2 receptor, GPR55 or PPARα antagonists and further increased by the TRPV1 antagonist capsazepine.. PEA improves murine experimental colitis, the effect being mediated by CB2 receptors, GPR55 and PPARα, and modulated by TRPV1 channels.

    Topics: Administration, Oral; Amides; Animals; Anti-Inflammatory Agents; Benzenesulfonates; Capsaicin; Colitis; Colon; Disease Models, Animal; Endocannabinoids; Ethanolamines; Intestinal Absorption; Male; Mice, Inbred ICR; Oleic Acids; Palmitic Acids; Peroxidase; PPAR alpha; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; RNA, Messenger; TRPV Cation Channels

2015
A simple method for simultaneous determination of N-arachidonoylethanolamine, N-oleoylethanolamine, N-palmitoylethanolamine and 2-arachidonoylglycerol in human cells.
    Analytical and bioanalytical chemistry, 2015, Volume: 407, Issue:6

    The endocannabinoid system has been considered as a target for pharmacological intervention. Accordingly, inhibition of fatty acid amide hydrolase (FAAH), a degrading enzyme of the endocannabinoids N-arachidonoylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG) as well as of the endocannabinoid-like substances N-oleoylethanolamine (OEA) and N-palmitoylethanolamine (PEA), can cause augmented endogenous cannabinoid tone. Using liquid chromatography coupled with positive electrospray ionisation mass spectrometry, we herein describe a method to simultaneously quantify levels of AEA, OEA, PEA and 2-AG in cultured cells. The procedure was developed according to the FDA guidelines for bioanalytical methods validation. The limits of quantification (LOQs) were 0.05 pmol for AEA, 0.09 pmol for OEA, 0.10 pmol for PEA and 0.80 pmol for 2-AG when molecular ion monitoring was used. In H460 human lung carcinoma cells, basal levels of all four analytes ranged between 2 and 17 pmol mg(-1) protein with PEA showing the lowest and OEA the highest concentrations. Endocannabinoid levels observed in mesenchymal stem cells were of the same order of magnitude when compared to those in H460 human lung carcinoma cells.

    Topics: Amides; Arachidonic Acids; Cell Line, Tumor; Chromatography, Liquid; Endocannabinoids; Ethanolamines; Glycerides; Humans; Limit of Detection; Lung Neoplasms; Mass Spectrometry; Mesenchymal Stem Cells; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Reproducibility of Results

2015
Deranged endocannabinoid responses to hedonic eating in underweight and recently weight-restored patients with anorexia nervosa.
    The American journal of clinical nutrition, 2015, Volume: 101, Issue:2

    A dysregulation of reward mechanisms was suggested in the pathophysiology of anorexia nervosa (AN), but the role of the endogenous mediators of reward has been poorly investigated. Endocannabinoids, including anandamide and 2-arachidonoylglycerol, and the endocannabinoid-related compounds oleoylethanolamide and palmitoylethanolamide modulate food-related and unrelated reward. Hedonic eating, which is the consumption of food just for pleasure and not homeostatic need, is a suitable paradigm to explore food-related reward.. We investigated responses of endocannabinoids and endocannabinoid-related compounds to hedonic eating in AN.. Peripheral concentrations of anandamide, 2-arachidonoylglycerol, oleoylethanolamide, and palmitoylethanolamide were measured in 7 underweight and 7 weight-restored AN patients after eating favorite and nonfavorite foods in the condition of no homeostatic needs, and these measurements were compared with those of previously studied healthy control subjects.. 1) In healthy controls, plasma 2-arachidonoylglycerol concentrations decreased after both types of meals but were significantly higher in hedonic eating; in underweight AN patients, 2-arachidonoylglycerol concentrations did not show specific time patterns after eating either favorite or nonfavorite foods, whereas in weight-restored patients, 2-arachidonoylglycerol concentrations showed similar increases with both types of meals. 2) Anandamide plasma concentrations exhibited no differences in their response patterns to hedonic eating in the groups. 3) Compared with 2-arachidonoylglycerol, palmitoylethanolamide concentrations exhibited an opposite response pattern to hedonic eating in healthy controls; this pattern was partially preserved in underweight AN patients but not in weight-restored ones. 4) Like palmitoylethanolamide, oleoylethanolamide plasma concentrations tended to be higher in nonhedonic eating than in hedonic eating in healthy controls; moreover, no difference between healthy subjects and AN patients was observed for food-intake-induced changes in oleoylethanolamide concentrations.. These data confirm that endocannabinoids and endocannabinoid-related compounds are involved in food-related reward and suggest a dysregulation of their physiology in AN. This trial was registered at ISRCTN.org as ISRCTN64683774.

    Topics: Adolescent; Adult; Amides; Anorexia Nervosa; Arachidonic Acids; Case-Control Studies; Endocannabinoids; Energy Intake; Ethanolamines; Female; Glycerides; Healthy Volunteers; Humans; Male; Meals; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Retrospective Studies; Reward; Thinness; Young Adult

2015
Effects of dietary CLA on n-3 HUFA score and N-acylethanolamides biosynthesis in the liver of obese Zucker rats.
    Prostaglandins, leukotrienes, and essential fatty acids, 2015, Volume: 98

    We have recently shown that PPAR alpha agonists induce N-oleoylethanolamide (OEA) and N-palmitoylethanolamide (PEA) biosynthesis. Conjugated linoleic acid (CLA), a known dietary PPAR alpha inducer, may therefore increase OEA and PEA levels and favor docosahexaenoic acid (DHA) biosynthesis by enhancing peroxisomal β-oxidation via induction of liver PPARα. To evaluate whether CLA is able to increase DHA, OEA and PEA levels and thereby influencing liver lipid deposition in a model of visceral obesity-induced fatty liver, Zucker rats were fed a background diet rich in saturated fat with or without 1% of CLA for 4 weeks. Our data showed that CLA intake increased DHA, OEA and PEA levels in the liver by 24%, 31% and 36% respectively, and reduced hepatic lipid accumulation by 16%. We may conclude that dietary CLA is able to influence not only fatty acid metabolism but also the biosynthesis of bioactive mediators such as OEA and PEA which may contribute to ameliorate fatty liver.

    Topics: Amides; Animals; Dietary Supplements; Disease Models, Animal; Docosahexaenoic Acids; Endocannabinoids; Ethanolamines; Linoleic Acids, Conjugated; Lipid Metabolism; Liver; Obesity; Oleic Acids; Palmitic Acids; Rats; Rats, Zucker

2015
Endocannabinoids regulate the activity of astrocytic hemichannels and the microglial response against an injury: In vivo studies.
    Neurobiology of disease, 2015, Volume: 79

    Anandamide (AEA) is an endocannabinoid (EC) that modulates multiple functions in the CNS and that is released in areas of injury, exerting putative neuroprotective actions. In the present study, we have used intravital microscopy to analyze the role of the EC system in the glial response against an acute insult. Our data show that AEA modulates astroglial function in vivo by increasing connexin-43 hemichannel (HC) activity. Furthermore, the genetic inactivation of the AEA-degrading enzyme, fatty acid amide hydrolase (FAAH), also increased HC activity and enhanced the microglial response against an acute injury to the brain parenchyma, effects that were mediated by cannabinoid CB1 receptors. The contribution of ATP released through an astrocytic HC was critical for the microglial response, as this was prevented by the use of the HC blocker flufenamic acid and by apyrase. As could be expected, brain concentrations of AEA, palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) were elevated in FAAH-null mice, while 2-arachidonoylglycerol (2-AG) concentrations remained unaltered. In summary, these findings demonstrate that AEA modifies glial functions by promoting an enhanced pro-inflammatory glial response in the brain.

    Topics: Adenosine Triphosphate; Amides; Amidohydrolases; Animals; Anti-Inflammatory Agents; Apyrase; Arachidonic Acids; Astrocytes; Brain; Brain Injuries; Connexin 43; Disease Models, Animal; Endocannabinoids; Ethanolamines; Flufenamic Acid; Glycerides; Lasers; Mice; Mice, Knockout; Mice, Transgenic; Microglia; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1

2015
Comparative effects of parathion and chlorpyrifos on endocannabinoid and endocannabinoid-like lipid metabolites in rat striatum.
    Neurotoxicology, 2015, Volume: 50

    Parathion and chlorpyrifos are organophosphorus insecticides (OPs) that elicit acute toxicity by inhibiting acetylcholinesterase (AChE). The endocannabinoids (eCBs, N-arachidonoylethanolamine, AEA; 2-arachidonoylglycerol, 2AG) are endogenous neuromodulators that regulate presynaptic neurotransmitter release in neurons throughout the central and peripheral nervous systems. While substantial information is known about the eCBs, less is known about a number of endocannabinoid-like metabolites (eCBLs, e.g., N-palmitoylethanolamine, PEA; N-oleoylethanolamine, OEA). We report the comparative effects of parathion and chlorpyrifos on AChE and enzymes responsible for inactivation of the eCBs, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), and changes in the eCBs AEA and 2AG and eCBLs PEA and OEA, in rat striatum. Adult, male rats were treated with vehicle (peanut oil, 2 ml/kg, sc), parathion (27 mg/kg) or chlorpyrifos (280 mg/kg) 6-7 days after surgical implantation of microdialysis cannulae into the right striatum, followed by microdialysis two or four days later. Additional rats were similarly treated and sacrificed for evaluation of tissue levels of eCBs and eCBLs. Dialysates and tissue extracts were analyzed by LC-MS/MS. AChE and FAAH were extensively inhibited at both time-points (85-96%), while MAGL activity was significantly but lesser affected (37-62% inhibition) by parathion and chlorpyrifos. Signs of toxicity were noted only in parathion-treated rats. In general, chlorpyrifos increased eCB levels while parathion had no or lesser effects. Early changes in extracellular AEA, 2AG and PEA levels were significantly different between parathion and chlorpyrifos exposures. Differential changes in extracellular and/or tissue levels of eCBs and eCBLs could potentially influence a number of signaling pathways and contribute to selective neurological changes following acute OP intoxications.

    Topics: Acetylcholinesterase; Amides; Amidohydrolases; Animals; Arachidonic Acids; Chlorpyrifos; Cholinesterase Inhibitors; Corpus Striatum; Endocannabinoids; Ethanolamines; Glycerides; Lipid Metabolism; Male; Monoacylglycerol Lipases; Oleic Acids; Palmitic Acids; Parathion; Rats; Rats, Sprague-Dawley; Tandem Mass Spectrometry; Time Factors

2015
Inhibition of FAAH confers increased stem cell migration via PPARα.
    Journal of lipid research, 2015, Volume: 56, Issue:10

    Regenerative activity in tissues of mesenchymal origin depends on the migratory potential of mesenchymal stem cells (MSCs). The present study focused on inhibitors of the enzyme fatty acid amide hydrolase (FAAH), which catalyzes the degradation of endocannabinoids (anandamide, 2-arachidonoylglycerol) and endocannabinoid-like substances (N-oleoylethanolamine, N-palmitoylethanolamine). Boyden chamber assays, the FAAH inhibitors, URB597 and arachidonoyl serotonin (AA-5HT), were found to increase the migration of human adipose-derived MSCs. LC-MS analyses revealed increased levels of all four aforementioned FAAH substrates in MSCs incubated with either FAAH inhibitor. Following addition to MSCs, all FAAH substrates mimicked the promigratory action of FAAH inhibitors. Promigratory effects of FAAH inhibitors and substrates were causally linked to activation of p42/44 MAPKs, as well as to cytosol-to-nucleus translocation of the transcription factor, PPARα. Whereas PPARα activation by FAAH inhibitors and substrates became reversed upon inhibition of p42/44 MAPK activation, a blockade of PPARα left p42/44 MAPK phosphorylation unaltered. Collectively, these data demonstrate FAAH inhibitors and substrates to cause p42/44 MAPK phosphorylation, which subsequently activates PPARα to confer increased migration of MSCs. This novel pathway may be involved in regenerative effects of endocannabinoids whose degradation could be a target of pharmacological intervention by FAAH inhibitors.

    Topics: Adipose Tissue; Amides; Amidohydrolases; Arachidonic Acids; Benzamides; Carbamates; Cell Movement; Cells, Cultured; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Glycerides; Humans; Mesenchymal Stem Cells; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; PPAR alpha; Receptor, Cannabinoid, CB1; Serotonin

2015
Circulating Endocannabinoids and the Polymorphism 385C>A in Fatty Acid Amide Hydrolase (FAAH) Gene May Identify the Obesity Phenotype Related to Cardiometabolic Risk: A Study Conducted in a Brazilian Population of Complex Interethnic Admixture.
    PloS one, 2015, Volume: 10, Issue:11

    The dysregulation of the endocannabinoid system is associated with cardiometabolic complications of obesity. Allelic variants in coding genes for this system components may contribute to differences in the susceptibility to obesity and related health hazards. These data have mostly been shown in Caucasian populations and in severely obese individuals. We investigated a multiethnic Brazilian population to study the relationships among the polymorphism 385C>A in an endocannabinoid degrading enzyme gene (FAAH), endocannabinoid levels and markers of cardiometabolic risk. Fasting plasma levels of endocannabinoids and congeners (anandamide, 2-arachidonoylglycerol, N-oleoylethanolamide and N-palmitoylethanolamide) were measured by liquid chromatography-mass spectrometry in 200 apparently healthy individuals of both genders with body mass indices from 22.5 ± 1.8 to 35.9 ± 5.5 kg/m2 (mean ± 1 SD) and ages between 18 and 60 years. All were evaluated for anthropometric parameters, blood pressure, metabolic variables, homeostatic model assessment of insulin resistance (HOMA-IR), adiponectin, leptin, C-reactive protein, and genotyping. The endocannabinoid levels increased as a function of obesity and insulin resistance. The homozygous genotype AA was associated with higher levels of anandamide and lower levels of adiponectin versus wild homozygous CC and heterozygotes combined. The levels of anandamide were independent and positively associated with the genotype AA position 385 of FAAH, C-reactive protein levels and body mass index. Our findings provide evidence for an endocannabinoid-related phenotype that may be identified by the combination of circulating anandamide levels with genotyping of the FAAH 385C>A; this phenotype is not exclusive to mono-ethnoracial populations nor to individuals with severe obesity.

    Topics: Adiponectin; Adult; Amides; Amidohydrolases; Anthropometry; Arachidonic Acids; Blood Pressure; Body Mass Index; Brazil; Endocannabinoids; Ethanolamines; Ethnicity; Female; Genotype; Glycerides; Homeostasis; Homozygote; Humans; Insulin Resistance; Male; Middle Aged; Obesity; Oleic Acids; Palmitic Acids; Phenotype; Polymorphism, Genetic; Polyunsaturated Alkamides; Prevalence; Risk Factors

2015
Circulating endocannabinoids in insulin sensitive vs. insulin resistant obese postmenopausal women. A MONET group study.
    Obesity (Silver Spring, Md.), 2014, Volume: 22, Issue:1

    To measure the circulating levels of endocannabinoids and related molecules at fasting, after acute hyperinsulinemia and after weight loss in insulin sensitive vs. insulin resistant obese postmenopausal women.. The sample consisted of 30 obese postmenopausal women (age: 58.9 ± 5.2 yrs; BMI: 32.9 ± 3.6 kg/m(2) ). Subjects underwent a 3-hour hyperinsulinaemic-euglycaemic clamp (HEC) (glucose disposal rate (M-value): 10.7 ± 3.3 mg min(-1) kg(-1) FFM) and 6-month weight loss intervention. Participants were classified as insulin sensitive obese (ISO) or insulin resistant obese (IRO) based on a predefined cutoff. Plasma levels of the endocannabinoids, anandamide (AEA), 2-arachidonoylglycerol (2-AG), and of the AEA-related compounds, palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), were measured by liquid chromatography-mass spectrometry.. IRO presented higher levels of 2-AG (P < 0.05) independently of the HEC and weight loss, whereas the HEC had an independent inhibitory effect on AEA, PEA, and OEA levels (P < 0.05) in both groups. Furthermore, there was an independent stimulatory effect of weight loss only on PEA levels in both groups (P < 0.05).. This study is the first to show that higher circulating levels of the endocannabinoid 2-AG are found in IRO compared to ISO postmenopausal women, and that weight loss is associated with an increase in PEA, a PPAR-α ligand.

    Topics: Amides; Arachidonic Acids; Body Composition; Body Mass Index; Cholesterol, HDL; Cholesterol, LDL; Cohort Studies; Endocannabinoids; Ethanolamines; Female; Glucose Clamp Technique; Glycerides; Humans; Hyperinsulinism; Insulin; Insulin Resistance; Middle Aged; Obesity; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Postmenopause; Triglycerides; Weight Loss

2014
Plasma anandamide and related n-acylethanolamide levels are not elevated in pregnancies complicated by hyperemesis gravidarum.
    The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians, 2014, Volume: 27, Issue:9

    Cannabinoids are effective antiemetics and the "endogenous cannabinoids" (endocannabinoids) are thought to modulate emesis in both humans and animal models. Endocannabinoids, their receptors and their metabolising enzymes are present in peripheral blood and a reduction in blood endocannabinoid concentration has been observed in individuals with excessive nausea and vomiting following parabolic flight manoeuvres. We tested the hypothesis that plasma endocannabinoid levels are similarly perturbed in women with hyperemesis gravidarum (HG), a condition where the aetiopathogenesis is still unknown, compared to normal pregnant controls.. Plasma N-arachidonoylethanolamine (anandamide), N-oleoylethanolamide and N-palmitoylethanolamide were quantified in women with HG (n = 15) and matched normal pregnant controls (n = 30) using UHPLC-ESI-MS/MS utilising an isotope dilution method and selective ion monitoring.. No significant differences in anandamide, oleoylethanolamide and palmitoylethanolamide levels were observed between the two groups. There were no significant correlations between these endocannabinoids and plasma haematocrit and serum urea or sodium concentrations.. These results would suggest that either the circulating endocannabinoids quantified may not be key modulating factors in HG or that the expected endocannabinoid system response to the stress induced by nausea and vomiting of early pregnancy remain unchanged in women with HG.

    Topics: Adult; Amides; Arachidonic Acids; Case-Control Studies; Endocannabinoids; Ethanolamines; Female; Hematocrit; Humans; Hyperemesis Gravidarum; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Pregnancy; Sodium Chloride; Urea; Young Adult

2014
Changes in endocannabinoid and N-acylethanolamine levels in rat brain structures following cocaine self-administration and extinction training.
    Progress in neuro-psychopharmacology & biological psychiatry, 2014, Apr-03, Volume: 50

    Preclinical investigations have demonstrated that drugs of abuse alter the levels of lipid-based signalling molecules, including endocannabinoids (eCBs) and N-acylethanolamines (NAEs), in the rodent brain. In addition, several drugs targeting eCBs and/or NAEs are implicated in reward and/or seeking behaviours related to the stimulation of dopamine systems in the brain. In our study, the brain levels of eCBs (anandamide (AEA) and 2-arachidonoylglycerol (2-AG)) and NAEs (oleoylethanolamide (OEA) and palmitoylethanolamide (PEA)) were analyzed via an LC-MS/MS method in selected brain structures of rats during cocaine self-administration and after extinction training according to the "yoked" control procedure. Repeated (14days) cocaine (0.5mg/kg/infusion) self-administration and yoked drug delivery resulted in a significant decrease (ca. 52%) in AEA levels in the cerebellum, whereas levels of 2-AG increased in the frontal cortex, the hippocampus and the cerebellum and decreased in the hippocampus and the dorsal striatum. In addition, we detected increases (>150%) in the levels of OEA and PEA in the limbic areas in both cocaine treated groups, as well as an increase in the tissue levels of OEA in the dorsal striatum in only the yoked cocaine group and increases in the tissue levels of PEA in the dorsal striatum (both cocaine groups) and the nucleus accumbens (yoked cocaine group only). Compared to the yoked saline control group, extinction training (10days) resulted in a potent reduction in AEA levels in the frontal cortex, the hippocampus and the nucleus accumbens and in 2-AG levels in the hippocampus, the dorsal striatum and the cerebellum. The decreases in the limbic and subcortical areas were more apparent for rats that self-administered cocaine. Following extinction, there was a region-specific change in the levels of NAEs in rats previously injected with cocaine; a potent increase (ca. 100%) in the levels of OEA and PEA was detected in the prefrontal cortex and the hippocampus, whilst a drop was noted in the striatal areas versus yoked saline yoked animals. Our findings support the previous pharmacological evidence that the eCB system and NAEs are involved in reinforcement and extinction of positively reinforced behaviours and that these lipid-derived molecules may represent promising targets for the development of new treatments for drug addiction.

    Topics: Amides; Animals; Arachidonic Acids; Brain; Cocaine; Conditioning, Operant; Endocannabinoids; Ethanolamines; Extinction, Psychological; Glycerides; Male; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Rats; Reinforcement, Psychology; Self Administration

2014
Antidepressants and changes in concentration of endocannabinoids and N-acylethanolamines in rat brain structures.
    Neurotoxicity research, 2014, Volume: 26, Issue:2

    The endocannabinoid (eCB) system has recently been implicated in both the pathogenesis of depression and the action of antidepressants. Here, we investigated the effect of acutely or chronically administering antidepressants [imipramine (IMI) (15 mg/kg), escitalopram (ESC) (10 mg/kg), and tianeptine (10 mg/kg)] on the levels of both eCBs [anandamide (AEA) and 2-arachidonoylglycerol (2-AG)] and N-acylethanolamines (NAEs) [palmitoylethanolamide (PEA) and oleoylethanolamide (OEA)] in various rat brain regions. We also examined the ability of the acute and chronic administration of N-acetylcysteine (NAC) (a mucolytic drug; 100 mg/kg) or URB597 (a fatty acid amide hydrolase inhibitor; 0.3 mg/kg), which have both elicited antidepressant activity in preclinical studies, to affect eCB and NAE levels. Next, we determined whether the observed effects are stable 10 days after the chronic administration of these drugs was halted. We report that the chronic administration of all investigated drugs increased AEA levels in the hippocampus and also increased both AEA and 2-AG levels in the dorsal striatum. NAE levels in limbic regions also increased after treatment with IMI (PEA/OEA), ESC (PEA), and NAC (PEA/OEA). Removing chronic ESC treatment for 10 days affected eCB and NAE levels in the frontal cortex, hippocampus, dorsal striatum, and cerebellum, while a similar tianeptine-free period enhanced accumbal NAE levels. All other drugs maintained their effects after the 10-day washout period. Therefore, the eCB system appears to play a significant role in the mechanism of action of clinically effective and potential antidepressants and may serve as a target for drug design and discovery.

    Topics: Acetylcysteine; Amides; Amidohydrolases; Animals; Antidepressive Agents; Arachidonic Acids; Benzamides; Brain; Carbamates; Citalopram; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Expectorants; Glycerides; Imipramine; Male; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Rats, Wistar; Thiazepines

2014
Relationship between seminal plasma levels of anandamide congeners palmitoylethanolamide and oleoylethanolamide and semen quality.
    Fertility and sterility, 2014, Volume: 102, Issue:5

    To determine whether changes in seminal plasma concentrations of the endogenous lipid signaling molecules palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) have significant effects on sperm quality.. Biochemical and physiological studies of human seminal plasma and spermatozoa.. Academic tertiary care medical center.. Ninety men attending an infertility clinic for semen analysis.. Palmitoylethanolamide and OEA extracted from seminal plasma were quantified by ultra high-performance liquid chromatography (HPLC)-tandem mass spectrometry. Patient sperm from semen with normal parameters were exposed in vitro to PEA or OEA to determine effects on sperm motility, viability, and mitochondrial activity.. The relationship between seminal plasma concentrations of PEA and OEA and sperm quality and the effect of these compounds on sperm motility, viability, and mitochondria activity in vitro.. Palmitoylethanolamide and OEA concentrations in seminal plasma were lower in men with asthenozoospermia and oligoasthenoteratozospermia compared with men with normal semen parameters. Palmitoylethanolamide and OEA rapidly and significantly improved sperm motility and maintained viability without affecting mitochondria activity in vitro.. Maintenance of normal PEA and OEA tone in human seminal plasma may be necessary for the preservation of normal sperm function and male fertility. Exocannabinoids found in Cannabis, such as delta-9-tetrahydrocannabinol and cannabidiol, could compete with these endocannabinoids upsetting their finely balanced, normal functioning and resulting in male reproductive failure.

    Topics: Adult; Amides; Arachidonic Acids; Asthenozoospermia; Endocannabinoids; Ethanolamines; Humans; Male; Membrane Potential, Mitochondrial; Middle Aged; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Reproducibility of Results; Semen; Semen Analysis; Sensitivity and Specificity; Spermatozoa; Statistics as Topic; Young Adult

2014
Mechanisms of exercise-induced hypoalgesia.
    The journal of pain, 2014, Volume: 15, Issue:12

    The purpose of this study was to examine opioid and endocannabinoid mechanisms of exercise-induced hypoalgesia (EIH). Fifty-eight men and women (mean age = 21 years) completed 3 sessions. During the first session, participants were familiarized with the temporal summation of heat pain and pressure pain protocols. In the exercise sessions, following double-blind administration of either an opioid antagonist (50 mg naltrexone) or placebo, participants rated the intensity of heat pulses and indicated their pressure pain thresholds and pressure pain ratings before and after 3 minutes of submaximal isometric exercise. Blood was drawn before and after exercise. Results indicated that circulating concentrations of 2 endocannabinoids, N-arachidonylethanolamine and 2-arachidonoylglycerol, as well as related lipids oleoylethanolamide, palmitoylethanolamide, N-docosahexaenoylethanolamine, and 2-oleoylglycerol, increased significantly (P < .05) following exercise. Pressure pain thresholds increased significantly (P < .05), whereas pressure pain ratings decreased significantly (P < .05) following exercise. Also, temporal summation ratings were significantly lower (P < .05) following exercise. These changes in pain responses did not differ between the placebo and naltrexone conditions (P > .05). A significant association was found between EIH and docosahexaenoylethanolamine. These results suggest involvement of a nonopioid mechanism in EIH following isometric exercise.. Currently, the mechanisms responsible for EIH are unknown. This study provides support for a potential endocannabinoid mechanism of EIH following isometric exercise.

    Topics: Adolescent; Adult; Amides; Arachidonic Acids; Cross-Over Studies; Double-Blind Method; Endocannabinoids; Ethanolamines; Exercise; Female; Glycerides; Glycine; Hot Temperature; Humans; Isometric Contraction; Male; Oleic Acids; Pain; Pain Perception; Pain Threshold; Palmitic Acids; Pressure; Young Adult

2014
Systemic administration of oleoylethanolamide protects from neuroinflammation and anhedonia induced by LPS in rats.
    The international journal of neuropsychopharmacology, 2014, Dec-28, Volume: 18, Issue:6

    The acylethanolamides oleoylethanolamide and palmitoylethanolamide are endogenous lipid mediators with proposed neuroprotectant properties in central nervous system (CNS) pathologies. The precise mechanisms remain partly unknown, but growing evidence suggests an antiinflammatory/antioxidant profile.. We tested whether oleoylethanolamide/palmitoylethanolamide (10 mg/kg, i.p.) attenuate neuroinflammation and acute phase responses (hypothalamus-pituitary-adrenal (HPA) stress axis stress axis activation, thermoregulation, and anhedonia) induced by lipopolysaccharide (0.5 mg/kg, i.p.) in rats.. Lipopolysaccharide increased mRNA levels of the proinflammatory cytokines tumor necrosis factor-α, interleukin-1β, and interleukin-6, nuclear transcription factor-κB activity, and the expression of its inhibitory protein IκBα in cytoplasm, the inducible isoforms of nitric oxide synthase and cyclooxygenase-2, microsomal prostaglandin E2 synthase mRNA, and proinflammatory prostaglandin E2 content in frontal cortex 150 minutes after administration. As a result, the markers of nitrosative/oxidative stress nitrites (NO2(-)) and malondialdehyde were increased. Pretreatment with oleoylethanolamide/ palmitoylethanolamide reduced plasma tumor necrosis factor-α levels after lipopolysaccharide, but only oleoylethanolamide significantly reduced brain tumor necrosis factor-α mRNA. Oleoylethanolamide and palmitoylethanolamide prevented lipopolysaccharide-induced nuclear transcription factor-κB (NF-κB)/IκBα upregulation in nuclear and cytosolic extracts, respectively, the expression of inducible isoforms of nitric oxide synthase, cyclooxygenase-2, and microsomal prostaglandin E2 synthase and the levels of prostaglandin E2. Additionally, both acylethanolamides reduced lipopolysaccharide-induced oxidative/nitrosative stress. Neither oleoylethanolamide nor palmitoylethanolamide modified plasma corticosterone levels after lipopolysaccharide, but both acylethanolamides reduced the expression of hypothalamic markers of thermoregulation interleukin-1β, cyclooxygenase-2, and prostaglandin E2, and potentiated the hypothermic response after lipopolysaccharide. Interestingly, only oleoylethanolamide disrupted lipopolysaccharide-induced anhedonia in a saccharine preference test.. Results indicate that oleoylethanolamide and palmitoylethanolamide have antiinflammatory/neuroprotective properties and suggest a role for these acylethanolamides as modulators of CNS pathologies with a neuroinflammatory component.

    Topics: Amides; Anhedonia; Animals; Anti-Inflammatory Agents; Behavior, Animal; Body Temperature Regulation; Brain; Corticosterone; Cytokines; Disease Models, Animal; Encephalitis; Endocannabinoids; Endotoxins; Ethanolamines; Food Preferences; Frontal Lobe; Hypothalamo-Hypophyseal System; Inflammation Mediators; Lipid Peroxidation; Male; Neuroprotective Agents; Oleic Acids; Oxidative Stress; Palmitic Acids; Pituitary-Adrenal System; Rats, Wistar; Taste Perception

2014
Full inhibition of spinal FAAH leads to TRPV1-mediated analgesic effects in neuropathic rats and possible lipoxygenase-mediated remodeling of anandamide metabolism.
    PloS one, 2013, Volume: 8, Issue:4

    Neuropathic pain elevates spinal anandamide (AEA) levels in a way further increased when URB597, an inhibitor of AEA hydrolysis by fatty acid amide hydrolase (FAAH), is injected intrathecally. Spinal AEA reduces neuropathic pain by acting at both cannabinoid CB1 receptors and transient receptor potential vanilloid-1 (TRPV1) channels. Yet, intrathecal URB597 is only partially effective at counteracting neuropathic pain. We investigated the effect of high doses of intrathecal URB597 on allodynia and hyperalgesia in rats with chronic constriction injury (CCI) of the sciatic nerve. Among those tested, the 200 µg/rat dose of URB597 was the only one that elevated the levels of the FAAH non-endocannabinoid and anti-inflammatory substrates, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), and of the endocannabinoid FAAH substrate, 2-arachidonoylglycerol, and fully inhibited thermal and tactile nociception, although in a manner blocked almost uniquely by TRPV1 antagonism. Surprisingly, this dose of URB597 decreased spinal AEA levels. RT-qPCR and western blot analyses demonstrated altered spinal expression of lipoxygenases (LOX), and baicalein, an inhibitor of 12/15-LOX, significantly reduced URB597 analgesic effects, suggesting the occurrence of alternative pathways of AEA metabolism. Using immunofluorescence techniques, FAAH, 15-LOX and TRPV1 were found to co-localize in dorsal spinal horn neurons of CCI rats. Finally, 15-hydroxy-AEA, a 15-LOX derivative of AEA, potently and efficaciously activated the rat recombinant TRPV1 channel. We suggest that intrathecally injected URB597 at full analgesic efficacy unmasks a secondary route of AEA metabolism via 15-LOX with possible formation of 15-hydroxy-AEA, which, together with OEA and PEA, may contribute at producing TRPV1-mediated analgesia in CCI rats.

    Topics: Amides; Amidohydrolases; Analgesia; Animals; Arachidonate 15-Lipoxygenase; Arachidonic Acids; Benzamides; Calcium Signaling; Carbamates; Diterpenes; Endocannabinoids; Ethanolamines; Flavanones; Glycerides; HEK293 Cells; Humans; Hyperalgesia; Injections, Spinal; Lipoxygenase Inhibitors; Male; Neuralgia; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Posterior Horn Cells; Rats; Rats, Wistar; Sciatic Nerve; Spinal Cord; TRPV Cation Channels

2013
Platelet-rich plasma exerts antinociceptive activity by a peripheral endocannabinoid-related mechanism.
    Tissue engineering. Part A, 2013, Volume: 19, Issue:19-20

    In regenerative medicine, platelet by-products containing factors physiologically involved in wound healing, have been successfully used in the form of platelet-rich plasma (PRP) for the topical therapy of various clinical conditions since it produces an improvement in tissue repair as well as analgesic effects. Measurement of endocannabinoids and related compounds in PRP revealed the presence of a significant amount of anandamide, 2-arachidonoylglycerol, palmitoylethanolamide, and oleoylethanolamide. Investigation of the activity of PRP on the keratinocyte cell line NCTC2544 in physiological and inflammatory conditions showed that, under inflammatory conditions, PRP induced in a statistically significant manner the production of these compounds by the cells suggesting that PRP might induce the production of these analgesic mediators particularly in the physiologically inflamed wounded tissue. Studies in a mouse model of acute inflammatory pain induced by formalin injection demonstrated a potent antinociceptive effect against both early and late nocifensive responses. This effect was observed following intrapaw injection of (1) total PRP; (2) lipids extracted from PRP; and (3) an endocannabinoid-enriched lipid fraction of PRP. In all conditions, antagonists of endocannabinoid CB1 and CB2 receptors, injected in the paw, abrogated the antinociceptive effects strongly suggesting for this preparation a peripheral mechanism of action. In conclusion, we showed that PRP and PRP lipid extract exert a potent antinociceptive activity linked, at least in part, to their endocannabinoids and related compound content, and to their capability of elevating the levels of these lipid mediators in cells.

    Topics: Amides; Analgesics; Animals; Arachidonic Acids; Blotting, Western; Cell Line, Tumor; Endocannabinoids; Ethanolamines; Glycerides; Humans; Inflammation; Keratinocytes; Mice; Oleic Acids; Pain; Palmitic Acids; Platelet-Rich Plasma; Polyunsaturated Alkamides

2013
Analysis of the "endocannabinoidome" in peripheral tissues of obese Zucker rats.
    Prostaglandins, leukotrienes, and essential fatty acids, 2013, Volume: 89, Issue:2-3

    The endocannabinoid system (ECS) represents one of the major determinants of metabolic disorders. We investigated potential changes in the endogenous levels of anandamide (AEA), 2-arachidonoylglycerol (2-AG), N-oleoylethanolamine (OEA) and N-palmitoylethanolamine (PEA) in some peripheral organs and tissues of obese Zucker(fa/fa) and lean Zucker(fa/+) rats by qPCR, liquid chromatography mass spectrometry, western blot and enzymatic activity assays. At 10-12 weeks of age AEA levels were significantly lower in BAT, small intestine and heart and higher in soleus of Zucker(fa/fa) rats. In this tissue, also the expression of CB1 receptors was higher. By contrast in Zucker(fa/fa) rats, 2-AG levels were changed (and lower) solely in the small and large intestine. Finally, in Zucker(fa/fa), PEA levels were unchanged, whereas OEA was slightly lower in BAT, and higher in the large intestine. Interestingly, these differences were accompanied by differential alterations of the genes regulating ECS tone. In conclusion, the levels of endocannabinoids are altered during obesity in a way partly correlating with changes of the genes related to their metabolism and activity.

    Topics: Amides; Animals; Arachidonic Acids; Blotting, Western; Chromatography, Liquid; Endocannabinoids; Ethanolamines; Glycerides; Male; Obesity; Oleic Acids; Palmitic Acids; Polymerase Chain Reaction; Polyunsaturated Alkamides; Rats; Rats, Zucker

2013
Reductions in circulating endocannabinoid levels in individuals with post-traumatic stress disorder following exposure to the World Trade Center attacks.
    Psychoneuroendocrinology, 2013, Volume: 38, Issue:12

    Endocannabinoid (eCB) signaling has been identified as a modulator of adaptation to stress, and is integral to basal and stress-induced glucocorticoid regulation. Furthermore, interactions between eCBs and glucocorticoids have been shown to be necessary for the regulation of emotional memories, suggesting that eCB function may relate to the development of post-traumatic stress disorder (PTSD). To examine this, plasma eCBs were measured in a sample (n=46) drawn from a population-based cohort selected for physical proximity to the World Trade Center (WTC) at the time of the 9/11 attacks. Participants received a structured diagnostic interview and were grouped according to whether they met diagnostic criteria for PTSD (no PTSD, n=22; lifetime diagnosis of PTSD=24). eCB content (2-arachidonoylglycerol (2-AG) and anandamide (AEA)) and cortisol were measured from 8 a.m. plasma samples. Circulating 2-AG content was significantly reduced among individuals meeting diagnostic criteria for PTSD. The effect of reduced 2-AG content in PTSD remained significant after controlling for the stress of exposure to the WTC collapse, gender, depression and alcohol abuse. There were no significant group differences for AEA or cortisol levels; however, across the whole sample AEA levels positively correlated with circulating cortisol, and AEA levels exhibited a negative relationship with the degree of intrusive symptoms within the PTSD sample. This report shows that PTSD is associated with a reduction in circulating levels of the eCB 2-AG. Given the role of 2-AG in the regulation of the stress response, these data support the hypothesis that deficient eCB signaling may be a component of the glucocorticoid dysregulation associated with PTSD. The negative association between AEA levels and intrusive symptoms is consistent with animal data indicating that reductions in AEA promote retention of aversive emotional memories. Future work will aim to replicate these findings and extend their relevance to clinical pathophysiology, as well as to neuroendocrine and molecular markers of PTSD.

    Topics: Aged; Alcoholism; Amides; Arachidonic Acids; Endocannabinoids; Ethanolamines; Ethnicity; Female; Glycerides; Humans; Hydrocortisone; Male; Middle Aged; Neuropsychological Tests; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Psychiatric Status Rating Scales; Sex Characteristics; Stress Disorders, Post-Traumatic; Terrorism

2013
Antinociceptive effects of the N-acylethanolamine acid amidase inhibitor ARN077 in rodent pain models.
    Pain, 2013, Volume: 154, Issue:3

    Fatty acid ethanolamides (FAEs), which include palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), are endogenous agonists of peroxisome proliferator-activated receptor-α (PPAR-α) and important regulators of the inflammatory response. They are degraded in macrophages by the lysosomal cysteine amidase, N-acylethanolamine acid amidase (NAAA). Previous studies have shown that pharmacological inhibition of NAAA activity suppresses macrophage activation in vitro and causes marked anti-inflammatory effects in vivo, which is suggestive of a role for NAAA in the control of inflammation. It is still unknown, however, whether NAAA-mediated FAE deactivation might regulate pain signaling. The present study examined the effects of ARN077, a potent and selective NAAA inhibitor recently disclosed by our group, in rodent models of hyperalgesia and allodynia caused by inflammation or nerve damage. Topical administration of ARN077 attenuated, in a dose-dependent manner, heat hyperalgesia and mechanical allodynia elicited in mice by carrageenan injection or sciatic nerve ligation. The antinociceptive effects of ARN077 were prevented by the selective PPAR-α antagonist GW6471 and did not occur in PPAR-α-deficient mice. Furthermore, topical ARN077 reversed the allodynia caused by ultraviolet B radiation in rats, and this effect was blocked by pretreatment with GW6471. Sciatic nerve ligation or application of the proinflammatory phorbol ester 12-O-tetradecanoylphorbol 13-acetate decreased FAE levels in sciatic nerve and skin tissue, respectively. ARN077 reversed these biochemical effects. The results identify ARN077 as a potent inhibitor of intracellular NAAA activity, which is active in vivo by topical administration. The findings further suggest that NAAA regulates peripheral pain initiation by interrupting endogenous FAE signaling at PPAR-α.

    Topics: Amides; Amidohydrolases; Analgesics; Animals; Burns; Carbamates; Carrageenan; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Ethers, Cyclic; HEK293 Cells; Humans; Hyperalgesia; Lysosomes; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Oleic Acids; Pain Perception; Palmitic Acids; PPAR alpha; Radiation Injuries; Rats; Recombinant Fusion Proteins; Sciatic Nerve; Tetradecanoylphorbol Acetate; Ultraviolet Rays

2013
Fatty acid amide hydrolase deficiency enhances intraplaque neutrophil recruitment in atherosclerotic mice.
    Arteriosclerosis, thrombosis, and vascular biology, 2013, Volume: 33, Issue:2

    Endocannabinoid levels are elevated in human and mouse atherosclerosis, but their causal role is not well understood. Therefore, we studied the involvement of fatty acid amide hydrolase (FAAH) deficiency, the major enzyme responsible for endocannabinoid anandamide degradation, in atherosclerotic plaque vulnerability.. We assessed atherosclerosis in apolipoprotein E-deficient (ApoE(-/-)) and ApoE(-/-)FAAH(-/-) mice. Before and after 5, 10, and 15 weeks on high-cholesterol diet, we analyzed weight, serum cholesterol, and endocannabinoid levels, and atherosclerotic lesions in thoracoabdominal aortas and aortic sinuses. Serum levels of FAAH substrates anandamide, palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) were 1.4- to 2-fold higher in case of FAAH deficiency. ApoE(-/-)FAAH(-/-) mice had smaller plaques with significantly lower content of smooth muscle cells, increased matrix metalloproteinase-9 expression, and neutrophil content. Circulating and bone marrow neutrophil counts were comparable between both genotypes, whereas CXC ligand1 levels were locally elevated in aortas of FAAH-deficient mice. We observed enhanced recruitment of neutrophils, but not monocytes, to large arteries of ApoE(-/-) mice treated with FAAH inhibitor URB597. Spleens of ApoE(-/-)FAAH(-/-) mice had reduced CD4+FoxP3+regulatory T-cell content, and in vitro stimulation of splenocytes revealed significantly elevated interferon-γ and tumor necrosis factor-α production in case of FAAH deficiency.. Increased anandamide and related FAAH substrate levels are associated with the development of smaller atherosclerotic plaques with high neutrophil content, accompanied by an increased proinflammatory immune response.

    Topics: Amides; Amidohydrolases; Animals; Aorta; Aortic Diseases; Apolipoproteins E; Arachidonic Acids; Atherosclerosis; Benzamides; Carbamates; Cells, Cultured; Chemokine CXCL1; Cholesterol; Disease Models, Animal; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Genotype; Inflammation Mediators; Interferon-gamma; Matrix Metalloproteinase 9; Mice; Mice, Inbred C57BL; Mice, Knockout; Muscle, Smooth, Vascular; Neutrophil Infiltration; Neutrophils; Oleic Acids; Palmitic Acids; Phenotype; Plaque, Atherosclerotic; Polyunsaturated Alkamides; Spleen; T-Lymphocytes, Regulatory; Time Factors; Tumor Necrosis Factor-alpha

2013
N-acylethanolamine acid amidase (NAAA), a new path to unleash PPAR-mediated analgesia.
    Pain, 2013, Volume: 154, Issue:3

    Topics: Amides; Amidohydrolases; Analgesics; Animals; Carbamates; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Ethers, Cyclic; Humans; Hyperalgesia; Male; Oleic Acids; Pain Perception; Palmitic Acids; PPAR alpha

2013
Elevated anandamide and related N-acylethanolamine levels occur in the peripheral blood of women with ectopic pregnancy and are mirrored by changes in peripheral fatty acid amide hydrolase activity.
    The Journal of clinical endocrinology and metabolism, 2013, Volume: 98, Issue:3

    Studies from knockout mice suggest that perturbations in oviductal endocannabinoid levels, endocannabinoid receptors, or endocannabinoid degrading enzyme [fatty acid amide hydrolase (FAAH)] expression result in infertility secondary to physical trapping of embryos. Similar observations have been made in ectopic pregnant women together with a suggestion that the endocannabinoid receptor gene polymorphism 1359G/A (rs1049353) is associated with ectopic pregnancy. These observations led to the hypothesis that ectopic pregnancy is associated with a perturbation in levels of endocannabinoids and FAAH activity and that such changes are associated with impaired tubal function.. The objective of the study was to quantify the plasma levels of endocannabinoids (anandamide, oleoylethanolamide, and palmitoylethanolamide) and evaluate blood endocannabinoid metabolizing enzyme activities FAAH and N-acyl-phosphatidyl-ethanolamine phospholipase D (NAPE-PLD) in ectopic pregnancy and normal pregnant controls and relate that to β-human chorionic gonadotropin (β-hCG) levels. Additionally, we wanted to examine the effect of endocannabinoids on cilia beat frequency in Fallopian tube epithelial cells ex vivo.. Whole blood collected from ectopic and normal pregnancies was used for quantification of plasma endocannabinoid levels by ultra-HPLC-tandem mass spectrometry of FAAH and NAPE-PLD enzyme activities by radiometric assays, and β-hCG by immunoassay. Fallopian tube epithelial cells from healthy volunteers were treated with endocannabinoids and cilia beat frequency analyzed using a high-speed digital camera and CiliaFA software.. FAAH activity (P < .05) but not NAPE-PLD activity was significantly reduced in ectopic pregnancies. All 3 endocannabinoids levels were significantly higher (P < .05) in ectopic pregnancy. There was no correlation between endocannabinoids, enzyme activity, and β-hCG levels. Oleoylethanolamide (P < .05), but not methanandamide or palmitoylethanolamide, significantly decreased cilia beat frequency in Fallopian tube epithelial cells.. Elevated endocannabinoid levels and reduced FAAH activity are associated with ectopic pregnancy and may modulate tubal function, suggesting dysfunctional endocannabinoid action in ectopic implantation. Oleoylethanolamide may play a critical role in embryo-tubal transport.

    Topics: Adult; Amides; Amidohydrolases; Arachidonic Acids; Cells, Cultured; Chorionic Gonadotropin, beta Subunit, Human; Cilia; Embryo Implantation; Endocannabinoids; Ethanolamines; Fallopian Tubes; Female; Humans; Luteal Phase; Oleic Acids; Palmitic Acids; Phospholipase D; Polyunsaturated Alkamides; Pregnancy; Pregnancy, Ectopic; Young Adult

2013
Intense exercise increases circulating endocannabinoid and BDNF levels in humans--possible implications for reward and depression.
    Psychoneuroendocrinology, 2012, Volume: 37, Issue:6

    The endocannabinoid system is known to have positive effects on depression partly through its actions on neurotrophins, such as Brain-Derived Neurotrophic Factor (BDNF). As BDNF is also considered the major candidate molecule for exercise-induced brain plasticity, we hypothesized that the endocannabinoid system represents a crucial signaling system mediating the beneficial antidepressant effects of exercise. Here we investigated, in 11 healthy trained male cyclists, the effects of an intense exercise (60 min at 55% followed by 30 min at 75% W(max)) on plasma levels of endocannabinoids (anandamide, AEA and 2-arachidonoylglycerol, 2-AG) and their possible link with serum BDNF. AEA levels increased during exercise and the 15 min recovery (P<0.001), whereas 2-AG concentrations remained stable. BDNF levels increased significantly during exercise and then decreased during the 15 min of recovery (P<0.01). Noteworthy, AEA and BDNF concentrations were positively correlated at the end of exercise and after the 15 min recovery (r>0.66, P<0.05), suggesting that AEA increment during exercise might be one of the factors involved in exercise-induced increase in peripheral BDNF levels and that AEA high levels during recovery might delay the return of BDNF to basal levels. AEA production during exercise might be triggered by cortisol since we found positive correlations between these two compounds and because corticosteroids are known to stimulate endocannabinoid biosynthesis. These findings provide evidence in humans that acute exercise represents a physiological stressor able to increase peripheral levels of AEA and that BDNF might be a mechanism by which AEA influences the neuroplastic and antidepressant effects of exercise.

    Topics: Adult; Amides; Arachidonic Acids; beta-Endorphin; Bicycling; Brain-Derived Neurotrophic Factor; Cannabinoid Receptor Modulators; Chromatography, High Pressure Liquid; Depression; Endocannabinoids; Ethanolamines; Exercise; Glycerides; Hematocrit; Humans; Male; Mass Spectrometry; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; PPAR alpha; Reward; Young Adult

2012
Hedonic eating is associated with increased peripheral levels of ghrelin and the endocannabinoid 2-arachidonoyl-glycerol in healthy humans: a pilot study.
    The Journal of clinical endocrinology and metabolism, 2012, Volume: 97, Issue:6

    Hedonic hunger refers to consumption of food just for pleasure and not to maintain energy homeostasis. In this condition, the subject eats also when not in a state of short-term energy depletion, and food is consumed uniquely because of its gustatory rewarding properties. The physiological mechanisms underlying this eating behavior are not deeply understood, but endogenous rewarding mediators like ghrelin and endocannabinoids are likely involved.. To explore the role of these substances in hedonic eating, we measured changes in their plasma levels in eight satiated healthy subjects after ad libitum consumption of highly palatable food as compared with the consumption of nonpalatable food in isoenergetic amounts with the same nutrient composition of the palatable food.. The consumption of food for pleasure was characterized by increased peripheral levels of both the peptide ghrelin and the endocannabinoid 2-arachidonoyl-glycerol. Levels of the other endocannabinoid anandamide and of anandamide-related mediators oleoylethanolamide and palmitoylethanolamide, instead, progressively decreased after the ingestion of both highly pleasurable and isoenergetic nonpleasurable food. A positive correlation was found between plasma 2-arachidonoyl glycerol and ghrelin during hedonic but not nonhedonic, eating.. The present preliminary findings suggest that when motivation to eat is generated by the availability of highly palatable food and not by food deprivation, a peripheral activation of two endogenous rewarding chemical signals is observed. Future research should confirm and extend our results to better understand the phenomenon of hedonic eating, which influences food intake and, ultimately, body mass.

    Topics: Adult; Amides; Appetite; Arachidonic Acids; Blood Glucose; Cannabinoid Receptor Modulators; Endocannabinoids; Energy Intake; Ethanolamines; Feeding Behavior; Female; Ghrelin; Glycerides; Humans; Male; Oleic Acids; Palmitic Acids; Pilot Projects; Pleasure; Polyunsaturated Alkamides; Reference Values; Satiety Response; Young Adult

2012
Lack of effect of chronic pre-treatment with the FAAH inhibitor URB597 on inflammatory pain behaviour: evidence for plastic changes in the endocannabinoid system.
    British journal of pharmacology, 2012, Volume: 167, Issue:3

    Elevating levels of endocannabinoids with inhibitors of fatty acid amide hydrolase (FAAH) is a major focus of pain research, purported to be a safer approach devoid of cannabinoid receptor-mediated side effects. Here, we have determined the effects of sustained pharmacological inhibition of FAAH on inflammatory pain behaviour and if pharmacological inhibition of FAAH was as effective as genetic deletion of FAAH on pain behaviour.. Effects of pre-treatment with a single dose, versus 4 day repeated dosing with the selective FAAH inhibitor, URB597 (i.p. 0.3 mg·kg⁻¹), on carrageenan-induced inflammatory pain behaviour and spinal pro-inflammatory gene induction were determined in rats. Effects of pain induction and of the drug treatments on levels of arachidonoyl ethanolamide (AEA), palmitoyl ethanolamide (PEA) and oleolyl ethanolamide (OEA) in the spinal cord were determined.. Single, but not repeated, URB597 treatment significantly attenuated the development of inflammatory hyperalgesia (P < 0.001, vs. vehicle-treated animals). Neither mode of URB597 treatment altered levels of AEA, PEA and OEA in the hind paw, or carrageenan-induced paw oedema. Single URB597 treatment produced larger increases in AEA, PEA and OEA in the spinal cord, compared with those after repeated administration. Single and repeated URB597 treatment decreased levels of immunoreactive N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) in the spinal cord and attenuated carrageenan-induced spinal pro-inflammatory gene induction.. Changes in the endocannabinoid system may contribute to the loss of analgesic effects following repeated administration of low dose URB597 in this model of inflammatory pain.

    Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Behavior, Animal; Benzamides; Carbamates; Disease Models, Animal; Drug Administration Schedule; Endocannabinoids; Ethanolamines; Inflammation; Male; Oleic Acids; Pain; Palmitic Acids; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Spinal Cord

2012
Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1.
    Nature medicine, 2012, Volume: 18, Issue:8

    Primary astrocytomas of grade 3 or 4 according to the classification system of the World Health Organization (high-grade astrocytomas or HGAs) are preponderant among adults and are almost invariably fatal despite the use of multimodal therapy. Here we show that the juvenile brain has an endogenous defense mechanism against HGAs. Neural precursor cells (NPCs) migrate to HGAs, reduce glioma expansion and prolong survival time by releasing endovanilloids that activate the vanilloid receptor (transient receptor potential vanilloid subfamily member-1 or TRPV1) on HGA cells. TRPV1 is highly expressed in tumor and weakly expressed in tumor-free brain. TRPV1 stimulation triggers tumor cell death through the branch of the endoplasmic reticulum stress pathway that is controlled by activating transcription factor-3 (ATF3). The antitumorigenic response of NPCs is lost with aging. NPC-mediated tumor suppression can be mimicked in the adult brain by systemic administration of the synthetic vanilloid arvanil, suggesting that TRPV1 agonists have potential as new HGA therapeutics.

    Topics: Aging; Amides; Amidohydrolases; Animals; Antineoplastic Agents; Apoptosis; Arachidonic Acids; Brain; Brain Neoplasms; Capsaicin; Cell Movement; Culture Media, Conditioned; Dopamine; Endocannabinoids; Ethanolamines; Female; Gene Expression Regulation, Neoplastic; Glioblastoma; Humans; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, SCID; Neoplasm Proteins; Neural Stem Cells; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Real-Time Polymerase Chain Reaction; RNA, Small Interfering; TRPV Cation Channels; Tumor Cells, Cultured

2012
Regulation of GPR119 receptor activity with endocannabinoid-like lipids.
    American journal of physiology. Endocrinology and metabolism, 2012, Dec-15, Volume: 303, Issue:12

    The GPR119 receptor plays an important role in the secretion of incretin hormones in response to nutrient consumption. We have studied the ability of an array of naturally occurring endocannabinoid-like lipids to activate GPR119 and have identified several lipid receptor agonists. The most potent receptor agonists identified were three N-acylethanolamines: oleoylethanolamine (OEA), palmitoleoylethanolamine, and linoleylethanolamine (LEA), all of which displayed similar potency in activating GPR119. Another lipid, 2-oleoylglycerol (2-OG), also activated GPR119 receptor but with significantly lower potency. Endogenous levels of endocannabinoid-like lipids were measured in intestine in fasted and refed mice. Of the lipid GPR119 agonists studied, the intestinal levels of only OEA, LEA, and 2-OG increased significantly upon refeeding. Intestinal levels of OEA and LEA in the fasted mice were low. In the fed state, OEA levels only moderately increased, whereas LEA levels rose drastically. 2-OG was the most abundant of the three GPR119 agonists in intestine, and its levels were radically elevated in fed mice. Our data suggest that, in lean mice, 2-OG and LEA may serve as physiologically relevant endogenous GPR119 agonists that mediate receptor activation upon nutrient uptake.

    Topics: Amides; Animals; Cannabinoid Receptor Agonists; Cannabinoid Receptor Antagonists; Cell Line; Endocannabinoids; Endocrine Cells; Ethanolamines; Fasting; Glucagon-Like Peptide 1; Glycerides; Humans; Intestinal Mucosa; Male; Mice; Mice, Inbred C57BL; Oleic Acids; Organ Specificity; Palmitic Acids; Random Allocation; Receptors, G-Protein-Coupled; Recombinant Proteins; Thinness; Up-Regulation

2012
Fatty acid amide hydrolase (FAAH) inhibition reduces L-3,4-dihydroxyphenylalanine-induced hyperactivity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned non-human primate model of Parkinson's disease.
    The Journal of pharmacology and experimental therapeutics, 2011, Volume: 336, Issue:2

    Dopaminergic therapies remain the most efficacious symptomatic treatments for Parkinson's disease (PD) but are associated with motor complications, including dyskinesia, and nonmotor complications, such as psychosis, impulse control disorders (ICD), and dopamine dysregulation syndrome (DDS). Nondopaminergic neurotransmitter systems, including the endocannabinoid system, are probably critical to the development of these complications. The role of fatty acid amide hydrolase (FAAH) in mediating l-3,4-dihydroxyphenylalanine (L-DOPA)-induced behaviors was explored in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned marmoset model of PD. Pharmacodynamic and locomotor effects of the selective FAAH inhibitor [3-(3-carbamoylphenyl)phenyl] N-cyclohexylcarbamate (URB597) were assessed via bioanalytical (liquid chromatography-tandem mass spectrometry) and behavioral observation approaches. URB597 (3, 10, 30, or 60 mg/kg p.o.) increased plasma levels of the FAAH substrates N-arachidonoyl ethanolamide (anandamide), N-oleoyl ethanolamide, and N-palmitoyl ethanolamide by 10.3 ± 0.3-, 7.8 ± 0.2-, and 1.8 ± 0.1-fold (mean of URB597 groups ± S.E.M.), respectively, compared with vehicle (all p < 0.001) 4 h after administration. Treatment with L-DOPA (20 mg/kg s.c.) alleviated parkinsonism but elicited dyskinesia, psychosis-like-behaviors and hyperactivity, a potential correlate of ICD and DDS. During the 2 to 4 h after L-DOPA, corresponding to 4 to 6 h after URB597 administration, URB597 reduced total L-DOPA-induced activity and the magnitude of hyperactivity by 32 and 52%, respectively, to levels equivalent to those seen in normal animals. Treatment with URB597 (10 mg/kg p.o.) did not modify the antiparkinsonian actions of L-DOPA or L-DOPA-induced dyskinesia and psychosis. URB597 did not alter plasma L-DOPA levels and was without behavioral effects when administered alone. Inhibition of FAAH may represent a novel approach to reducing L-DOPA-induced side effects, such as ICD and DDS, while maintaining the antiparkinsonian benefits of L-DOPA treatment.

    Topics: Amides; Amidohydrolases; Animals; Benzamides; Callithrix; Carbamates; Disease Models, Animal; Dyskinesia, Drug-Induced; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Female; Levodopa; Motor Activity; MPTP Poisoning; Oleic Acids; Palmitic Acids; Psychoses, Substance-Induced

2011
LC-MS/MS-ESI method for simultaneous quantitation of three endocannabinoids and its application to rat pharmacokinetic studies.
    Bioanalysis, 2011, Volume: 3, Issue:2

    An LC-MS/MS-ESI method has been validated for simultaneous estimation of the three endocannabinoids; N-arachidonoylethanolamine (AEA), N-oleoylethanolamine (OEA) and palmitoylethanolamide (PEA), in surrogate matrix using AEA-d (4) as an internal standard with highest sensitivity over the existing methods. Simple precipitation was used to extract analytes and these were subsequently analyzed on a monolithic column. Linear response function was established over the concentration range 12.3 to 1225 pg/ml for AEA (r > 0.994); 0.70 to 641 ng/ml for OEA (r > 0.999) and 0.54 to 321 ng/ml (r > 0.998) for PEA. The intra- and inter-day precision values met the acceptance to criteria as per US FDA guidelines. Analytes were found to be stable in the battery of stability studies. The method was applied to quantify endogenous levels of analytes in rat plasma.

    Topics: Amides; Animals; Arachidonic Acids; Cannabinoid Receptor Modulators; Chromatography, Liquid; Endocannabinoids; Ethanolamines; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Rats; Reference Standards; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry

2011
Depolarizing and calcium-mobilizing stimuli fail to enhance synthesis and release of endocannabinoids from rat brain cerebral cortex slices.
    Journal of neurochemistry, 2011, Volume: 117, Issue:4

    The concentrations of the endocannabinoids 2-arachidonoylglycerol (2-AG) and N-arachidonylethanolamine (anandamide) were examined in rat brain cerebral cortex slices and surrounding medium. Basal concentrations of endocannabinoids were similar to those identified previously in rat brain, with anandamide content being much lower (19 pmol/g) than that of 2-AG (7300 pmol/g). In contrast, basal concentrations in the surrounding medium were proportionally much lower for 2-arachidonoylglycerol (16 pmol/mL) compared to anandamide (0.6 pmol/mL). Incubation of slices with glutamate receptor agonists, depolarizing concentrations of KCl, or ionomycin failed to alter tissue concentrations of endocannabinoids, while endocannabinoids in the medium were unaltered by elevated KCl. Cyclohexyl carbamic acid 3'-carbamoyl-biphenyl-3-yl ester, an inhibitor of fatty acid amide hydrolase, significantly enhanced tissue concentrations of anandamide (and related N-acylethanolamines), without altering 2-AG, while evoking proportional elevations of anandamide in the medium. Removal of extracellular calcium ions failed to alter tissue concentrations of anandamide, but significantly reduced 2-AG in the tissue by 90% and levels in the medium to below the detection limit. Supplementation of the medium with 50 μM N-oleoylethanolamine only raised tissue concentrations of N-oleoylethanolamine in the presence of cyclohexyl carbamic acid 3'-carbamoyl-biphenyl-3-yl ester and failed to alter either tissue or medium anandamide or 2-AG concentrations. These results highlight the ongoing turnover of endocannabinoids, and the importance of calcium ions in maintaining 2-AG concentrations in this tissue.

    Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Calcium; Calcium Signaling; Cannabinoid Receptor Modulators; Cerebral Cortex; Endocannabinoids; Ethanolamines; Glycerides; In Vitro Techniques; Inositol; Male; Monoacylglycerol Lipases; Oleic Acids; Palmitic Acids; Phospholipids; Polyunsaturated Alkamides; Potassium Chloride; Rats; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry

2011
Administration of URB597, oleoylethanolamide or palmitoylethanolamide increases waking and dopamine in rats.
    PloS one, 2011, Volume: 6, Issue:7

    Oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) are amides of fatty acids and ethanolamine named N-acylethanolamines or acylethanolamides. The hydrolysis of OEA and PEA is catalyzed by the fatty acid amide hydrolase (FAAH). A number of FAAH inhibitors that increase the levels of OEA and PEA in the brain have been developed, including URB597. In the present report, we examined whether URB597, OEA or PEA injected into wake-related brain areas, such as lateral hypothalamus (LH) or dorsal raphe nuclei (DRN) would promote wakefulness (W) in rats.. Male Wistar rats (250-300 g) were implanted for sleep studies with electrodes to record the electroencephalogram and electromyogram as well as a cannulae aimed either into LH or into DRN. Sleep stages were scored to determine W, slow wave sleep (SWS) and rapid eye movement sleep (REMS). Power spectra bands underly neurophysiological mechanisms of the sleep-wake cycle and provide information about quality rather than quantity of sleep, thus fast Fourier transformation analysis was collected after the pharmacological trials for alpha (for W; α = 8-12 Hz), delta (for SWS; δ = 0.5-4.0 Hz) and theta (for REMS; θ = 6.0-12.0 Hz). Finally, microdialysis samples were collected from a cannula placed into the nucleus accumbens (AcbC) and the levels of dopamine (DA) were determined by HPLC means after the injection of URB597, OEA or PEA. We found that microinjection of compounds (10, 20, 30 µg/1 µL; each) into LH or DRN during the lights-on period increased W and decreased SWS as well as REMS and enhanced DA extracellular levels.. URB597, OEA or PEA promoted waking and enhanced DA if injected into LH or DRN. The wake-promoting effects of these compounds could be linked with the enhancement in levels of DA and indirectly mediated by anandamide.

    Topics: Amides; Amidohydrolases; Animals; Benzamides; Carbamates; Dopamine; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Hypothalamus; Male; Oleic Acids; Palmitic Acids; Rats; Sleep; Wakefulness

2011
Increasing antiproliferative properties of endocannabinoids in N1E-115 neuroblastoma cells through inhibition of their metabolism.
    PloS one, 2011, Volume: 6, Issue:10

    The antitumoral properties of endocannabinoids received a particular attention these last few years. Indeed, these endogenous molecules have been reported to exert cytostatic, apoptotic and antiangiogenic effects in different tumor cell lines and tumor xenografts. Therefore, we investigated the cytotoxicity of three N-acylethanolamines--N-arachidonoylethanolamine (anandamide, AEA), N-palmitoylethanolamine (PEA) and N-oleoylethanolamine (OEA)--which were all able to time- and dose-dependently reduce the viability of murine N1E-115 neuroblastoma cells. Moreover, several inhibitors of FAAH and NAAA, whose presence was confirmed by RT-PCR in the cell line, induced cell cytotoxicity and favored the decrease in cell viability caused by N-acylethanolamines. The most cytotoxic treatment was achieved by the co-incubation of AEA with the selective FAAH inhibitor URB597, which drastically reduced cell viability partly by inhibiting AEA hydrolysis and consequently increasing AEA levels. This combination of molecules synergistically decreased cell proliferation without inducing cell apoptosis or necrosis. We found that these effects are independent of cannabinoid, TRPV1, PPARα, PPARγ or GPR55 receptors activation but seem to occur through a lipid raft-dependent mechanism. These findings further highlight the interest of targeting the endocannabinoid system to treat cancer. More particularly, this emphasizes the great potential benefit of designing novel anti-cancerous therapies based on the association of endocannabinoids and inhibitors of their hydrolysis.

    Topics: Amides; Animals; Antineoplastic Agents; Arachidonic Acids; Cannabinoid Receptor Modulators; Cell Line, Tumor; Cell Proliferation; Endocannabinoids; Ethanolamines; Metabolism; Mice; Neoplasms; Neuroblastoma; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides

2011
Basal and fasting/refeeding-regulated tissue levels of endogenous PPAR-alpha ligands in Zucker rats.
    Obesity (Silver Spring, Md.), 2010, Volume: 18, Issue:1

    N-oleoylethanolamine (OEA) and N-palmitoylethanolamine (PEA) are endogenous lipids that activate peroxisome proliferator-activated receptor-alpha with high and intermediate potency, and exert anorectic and anti-inflammatory actions in rats, respectively. We investigated OEA and PEA tissue level regulation by the nutritional status in lean and obese rats. OEA and PEA levels in the brainstem, duodenum, liver, pancreas, and visceral (VAT) or subcutaneous (SAT) adipose tissues of 7-week-old wild-type (WT) and Zucker rats, fed ad libitum or following overnight food deprivation, with and without refeeding, were measured by liquid chromatography-mass spectrometry. In WT rats, duodenal OEA, but not PEA, levels were reduced by food deprivation and restored by refeeding, whereas the opposite was observed for OEA in the pancreas, and for both mediators in the liver and SAT. In ad lib fed Zucker rats, PEA and OEA levels were up to tenfold higher in the duodenum, slightly higher in the brainstem, and lower in the other tissues. Fasting/refeeding-induced changes in OEA levels were maintained in the duodenum, liver, and SAT, and lost in the pancreas, whereas fasting upregulated this compound also in the VAT. The observed changes in OEA levels in WT rats are relevant to the actions of this mediator on satiety, hepatic and adipocyte metabolism, and insulin release. OEA dysregulation in Zucker rats might counteract hyperphagia in the duodenum, but contribute to hyperinsulinemia in the pancreas, and to fat accumulation in adipose tissues and liver. Changes in PEA levels might be relevant to the inflammatory state of Zucker rats.

    Topics: Adipose Tissue; Amides; Analysis of Variance; Animals; Brain Stem; Duodenum; Eating; Endocannabinoids; Energy Metabolism; Ethanolamines; Food Deprivation; Image Processing, Computer-Assisted; Immunohistochemistry; Liver; Male; Mass Spectrometry; Oleic Acids; Organ Specificity; Palmitic Acids; Pancreas; PPAR alpha; Rats; Rats, Wistar; Rats, Zucker

2010
Endocannabinoids and cannabinoid analogues block human cardiac Kv4.3 channels in a receptor-independent manner.
    Journal of molecular and cellular cardiology, 2010, Volume: 48, Issue:1

    Endocannabinoids are amides and esters of long chain fatty acids that can modulate ion channels through both receptor-dependent and receptor-independent effects. Nowadays, their effects on cardiac K(+) channels are unknown even when they can be synthesized within the heart. We have analyzed the direct effects of endocannabinoids, such as anandamide (AEA), 2-arachidonoylglycerol (2-AG), the endogenous lipid lysophosphatidylinositol, and cannabinoid analogues such as palmitoylethanolamide (PEA), and oleoylethanolamide, as well as the fatty acids from which they are endogenously synthesized, on human cardiac Kv4.3 channels, which generate the transient outward K(+) current (I(to1)). Currents were recorded in Chinese hamster ovary cells, which do not express cannabinoid receptors, by using the whole-cell patch-clamp. All these compounds inhibited I(Kv4.3) in a concentration-dependent manner, AEA and 2-AG being the most potent (IC(50) approximately 0.3-0.4 microM), while PEA was the least potent. The potency of block increased as the complexity and the number of C atoms in the fatty acyl chain increased. The effects were not mediated by modifications in the lipid order and microviscosity of the membrane and were independent of the presence of MiRP2 or DPP6 subunits in the channel complex. Indeed, effects produced by AEA were reproduced in human atrial I(to1) recorded in isolated myocytes. Moreover, AEA effects were exclusively apparent when it was applied to the external surface of the cell membrane. These results indicate that at low micromolar concentrations the endocannabinoids AEA and 2-AG directly block human cardiac Kv4.3 channels, which represent a novel molecular target for these compounds.

    Topics: Amides; Animals; Arachidonic Acid; Arachidonic Acids; Cannabinoid Receptor Modulators; Cannabinoids; CHO Cells; Cricetinae; Cricetulus; Endocannabinoids; Ethanolamines; Fatty Acids; Glycerides; Heart; Humans; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Shal Potassium Channels

2010
Circulating and hepatic endocannabinoids and endocannabinoid-related molecules in patients with cirrhosis.
    Liver international : official journal of the International Association for the Study of the Liver, 2010, Volume: 30, Issue:6

    Endocannabinoids include anandamide (AEA) and 2-arachidonoylglycerol (2-AG). Endocannabinoid-related molecules like oleoyl-ethanolamine (OEA) and palmitoyl-ethanolamine (PEA) have also been identified. AEA contributes to the pathogenesis of cardiovascular alterations in experimental cirrhosis, but data on the endocannabinoid system in human cirrhosis are lacking. Thus, we aimed to assess whether circulating and hepatic endocannabinoids are upregulated in cirrhotic patients and whether their levels correlate with systemic haemodynamics and liver function.. The endocannabinoid levels were measured in peripheral and hepatic veins and liver tissue by isotope-dilution liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. Systemic haemodynamics were assessed by the transthoracic electrical bioimpedance technique. Portal pressure was evaluated by hepatic venous pressure gradient.. Circulating AEA and, to a greater extent, PEA and OEA were significantly higher in cirrhotic patients than in controls. PEA and OEA were also increased in the cirrhotic liver tissue. AEA, OEA and PEA levels were significantly higher in peripheral than in the hepatic veins of cirrhotic patients, while the opposite occurred for 2-AG. Finally, circulating AEA, OEA and PEA correlated with parameters of liver function, such as serum bilirubin and international normalized ratio. No correlations were found with systemic haemodynamics.. The endocannabinoid system is upregulated in human cirrhosis. Peripheral AEA is increased in patients with a high model of end-stage liver disease score and may reflect the extent of liver dysfunction. In contrast, the 2-AG levels, the other major endocannabinoid, are not affected by cirrhosis. The upregulation of the endocannabinoid-related molecules, OEA and PEA, is even greater than that of AEA, prompting pharmacological studies on these compounds.

    Topics: Adult; Amides; Arachidonic Acids; Bilirubin; Biomarkers; Cannabinoid Receptor Modulators; Case-Control Studies; Chromatography, Liquid; Electric Impedance; Endocannabinoids; Ethanolamines; Female; Glycerides; Hemodynamics; Humans; International Normalized Ratio; Italy; Liver; Liver Cirrhosis; Liver Function Tests; Male; Mass Spectrometry; Middle Aged; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Radioisotope Dilution Technique; Severity of Illness Index; Up-Regulation

2010
Endocannabinoids and non-endocannabinoid fatty acid amides in cirrhosis.
    Liver international : official journal of the International Association for the Study of the Liver, 2010, Volume: 30, Issue:6

    Topics: Amides; Arachidonic Acids; Biomarkers; Cannabinoid Receptor Modulators; Endocannabinoids; Ethanolamines; Glycerides; Hemodynamics; Humans; International Normalized Ratio; Liver; Liver Cirrhosis; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Severity of Illness Index; Up-Regulation

2010
Differential alterations of the concentrations of endocannabinoids and related lipids in the subcutaneous adipose tissue of obese diabetic patients.
    Lipids in health and disease, 2010, Apr-28, Volume: 9

    The endocannabinoids, anandamide and 2-AG, are produced by adipocytes, where they stimulate lipogenesis via cannabinoid CB1 receptors and are under the negative control of leptin and insulin. Endocannabinoid levels are elevated in the blood of obese individuals and nonobese type 2 diabetes patients. To date, no study has evaluated endocannabinoid levels in subcutaneous adipose tissue (SAT) of subjects with both obesity and type 2 diabetes (OBT2D), characterised by similar adiposity and whole body insulin resistance and lower plasma leptin levels as compared to non-diabetic obese subjects (OB).. The levels of anandamide and 2-AG, and of the anandamide-related PPARalpha ligands, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), in the SAT obtained by abdominal needle biopsy in 10 OBT2D, 11 OB, and 8 non-diabetic normal-weight (NW) subjects, were measured by liquid chromatography-mass spectrometry. All subjects underwent a hyperinsulinaemic euglycaemic clamp.. As compared to NW, anandamide, OEA and PEA levels in the SAT were 2-4.4-fold elevated (p < 0.05), and 2-AG levels 2.3-fold reduced (p < .05), in OBT2D but not in OB subjects. Anandamide, OEA and PEA correlated positively (p < .05) with SAT leptin mRNA and free fatty acid during hyperinsulinaemic clamp, and negatively with SAT LPL activity and plasma HDL-cholesterol, which were all specifically altered in OBT2D subjects.. The observed alterations emphasize, for the first time in humans, the potential different role and regulation of adipose tissue anandamide (and its congeners) and 2-AG in obesity and type 2 diabetes.

    Topics: Adiposity; Adult; Amides; Arachidonic Acids; Cannabinoid Receptor Modulators; Diabetes Mellitus, Type 2; Endocannabinoids; Ethanolamines; Female; Humans; Lipids; Male; Middle Aged; Obesity; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Subcutaneous Fat

2010
Simultaneous measurement of three N-acylethanolamides in human bio-matrices using ultra performance liquid chromatography-tandem mass spectrometry.
    Analytical and bioanalytical chemistry, 2010, Volume: 398, Issue:5

    Endocannabinoids including N-acylethanolamides (NAEs) are a family of lipid-related signaling molecules implicated in many physiological and disease states which elicit their activities via the cannabinoid receptors. Anandamide (N-arachidonoylethanolamine, AEA) is the most characterized endocannabinoid and has been detected in many tissues and bio-fluids including human plasma and the central nervous system. The endocannabinoid-like NAEs, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) are described as entourage compounds because they illicit similar physiological effects to AEA but have little or no affinity for cannabinoid receptors. As entourage compounds, levels of these NAEs can greatly influence the efficacy of AEA yet there are few studies which measure these compounds in bio-fluids. Here we describe a rapid, highly sensitive, specific and highly reproducible ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the analysis of AEA, OEA, and PEA in human bio-fluids including plasma, serum, breast milk, and amniotic fluids. This validated method using deuterated (AEA-d(8), OEA-d(2), and PEA-d(4)) internal standards, represents an improvement over previous analyses in terms of run time (4 min), limit of detection (0.9 fmol on column for AEA and PEA and 4.4 fmol on column for OEA), precision (relative standard deviations of peak areas: 3.1% (AEA), 2.9% (OEA), and 5.4% (PEA) for 133 fmol on column) and accuracy (95.1-104.9%). The sensitivity and precision of the validated method described here suggests that this method is suitable for the analysis of AEA, OEA, and PEA in clinical samples and may be utilized for the investigation of bio-matrices containing limited amounts of NAEs.

    Topics: Amides; Arachidonic Acids; Chromatography, Liquid; Endocannabinoids; Ethanolamines; Humans; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Tandem Mass Spectrometry

2010
Quantitative analysis of anandamide and related acylethanolamides in human seminal plasma by ultra performance liquid chromatography tandem mass spectrometry.
    Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 2010, Dec-01, Volume: 878, Issue:31

    The endocannabinoids anandamide, palmitoylethanolamide and oleoylethanolamide have been detected in human seminal plasma and are bioactive lipids implicated in regulation of sperm motility, capacitation and acrosome reaction. Several methods exist for endocannabinoid quantification but none have been validated for measurement in human seminal plasma. We describe sensitive, robust, reproducible solid phase and isotope-dilution UHPLC-ESI-MS/MS methods for the extraction and quantification of anandamide, palmitoylethanolamide and oleoylethanolamide in human seminal plasma. Precision and accuracy were evaluated using pooled seminal plasma over a 4 day period. For all analytes, the inter- and intraday precision (CV%) was between 6.6-17.7% and 6.3-12.5%, respectively. Analyses were linear over the range 0.237-19nM for anandamide and oleoylethanolamide and 0.9-76nM for PEA. Limits of detection (signal-to-noise >3) were 50, 100 and 100fmol/mL and limits of quantification (signal-to-noise >10) were 100, 200 and 200fmol/mL, respectively for anandamide, palmitoylethanolamide and oleoylethanolamide. Anandamide and oleoylethanolamide were stable at -80°C for up to 4 weeks, but palmitoylethanolamide declined significantly. We assessed seminal plasma from 40 human donors with normozoospermia and found mean (inter-quartile range) concentrations of 0.21nM (0.09-0.27), 1.785nM (0.48-2.32) and 15.54nM (7.05-16.31) for anandamide, oleoylethanolamide and palmitoylethanolamide, respectively. Consequently, this UHPLC-ESI-MS/MS method represents a rapid, reliable and reproducible technique for the analysis of these endocannabinoids in fresh seminal plasma.

    Topics: Amides; Arachidonic Acids; Cannabinoid Receptor Modulators; Chromatography, High Pressure Liquid; Drug Stability; Endocannabinoids; Ethanolamines; Humans; Linear Models; Male; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Reproducibility of Results; Semen; Sensitivity and Specificity; Solid Phase Extraction; Tandem Mass Spectrometry

2010
Biochemical and biological properties of 4-(3-phenyl-[1,2,4] thiadiazol-5-yl)-piperazine-1-carboxylic acid phenylamide, a mechanism-based inhibitor of fatty acid amide hydrolase.
    Anesthesia and analgesia, 2009, Volume: 108, Issue:1

    Fatty acid amide hydrolase (FAAH) is an integral membrane enzyme within the amidase-signature family. It catalyzes the hydrolysis of several endogenous biologically active lipids, including anandamide (arachidonoyl ethanolamide), oleoyl ethanolamide, and palmitoyl ethanolamide. These endogenous FAAH substrates have been shown to be involved in a variety of physiological and pathological processes, including synaptic regulation, regulation of sleep and feeding, locomotor activity, pain and inflammation. Here we describe the biochemical and biological properties of a potent and selective FAAH inhibitor, 4-(3-phenyl-[1,2,4]thiadiazol-5-yl)-piperazine-1-carboxylic acid phenylamide (JNJ-1661010). The time-dependence of apparent IC(50) values at rat and human recombinant FAAH, dialysis and mass spectrometry data indicate that the acyl piperazinyl fragment of JNJ-1661010 forms a covalent bond with the enzyme. This bond is slowly hydrolyzed, with release of the piperazinyl fragment and recovery of enzyme activity. The lack of inhibition observed in a rat liver esterase assay suggests that JNJ-1661010 is not a general esterase inhibitor. JNJ-1661010 is >100-fold preferentially selective for FAAH-1 when compared to FAAH-2. JNJ-1661010 dose-dependently increases arachidonoyl ethanolamide, oleoyl ethanolamide, and palmitoyl ethanolamide in the rat brain. The compound attenuates tactile allodynia in the rat mild thermal injury model of acute tissue damage and in the rat spinal nerve ligation (Chung) model of neuropathic pain. JNJ-1661010 also diminishes thermal hyperalgesia in the inflammatory rat carrageenan paw model. These data suggest that FAAH inhibitors with modes of action similar to JNJ-1661010 may be useful clinically as broad-spectrum analgesics.

    Topics: Amides; Amidohydrolases; Analgesics; Animals; Arachidonic Acids; Brain; Carrageenan; Disease Models, Animal; Dose-Response Relationship, Drug; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Hot Temperature; Humans; Hydrolysis; Isoenzymes; Kinetics; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Neuralgia; Oleic Acids; Pain; Pain Measurement; Pain Threshold; Palmitic Acids; Piperazines; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Reaction Time; Recombinant Proteins; Thiadiazoles

2009
Regulation and possible role of endocannabinoids and related mediators in hypercholesterolemic mice with atherosclerosis.
    Atherosclerosis, 2009, Volume: 205, Issue:2

    In this study we analysed the possible modulation of endocannabinoids and related molecules during atherosclerosis development in mice. Wild-type and apolipoprotein E knockout (ApoE(-/-)) mice were fed either normal chow or high-cholesterol diet for 8-12 weeks, and tissue endocannabinoid levels were measured by liquid chromatography-mass spectrometry. We found increased levels of 2-AG in aortas and visceral adipose tissue (VAT) of ApoE(-/-) mice fed on high-cholesterol diet for 12 weeks as compared to ApoE(-/-) mice fed on normal chow or wild-type mice fed on cholesterol. No significant difference in 2-AG levels was observed after 8 weeks of diet, and no changes in anandamide levels were found in any group. The levels of the anandamide-related mediators with anti-inflammatory or anti-lipogenic properties, palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), decreased or increased only in VAT or in both tissues, respectively. Endocannabinoid- and OEA/PEA-degrading enzymes were expressed by macrophages within atherosclerotic lesions. In vitro, 2-AG and OEA-induced monocyte migration at 0.3-1microM, which corresponds to the levels observed in aortas. PEA 1microM also induced monocyte migration but counteracted the effect of 2-AG, whereas OEA enhanced it. Enhanced 2-AG levels in advanced atherosclerotic lesions may trigger the inflammatory process by recruiting more inflammatory cells and inducing extracellular matrix degradation via CB(2) receptors, and this possibility was supported in vitro but not in vivo by experiments with the CB(2) antagonist, SR144528.

    Topics: Amides; Animals; Aorta; Apolipoproteins E; Atherosclerosis; Camphanes; Cannabinoid Receptor Modulators; Cholesterol; Endocannabinoids; Ethanolamines; Hypercholesterolemia; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Oleic Acids; Palmitic Acids; Pyrazoles; Receptor, Cannabinoid, CB2

2009
Circulating endocannabinoids and N-acyl ethanolamines are differentially regulated in major depression and following exposure to social stress.
    Psychoneuroendocrinology, 2009, Volume: 34, Issue:8

    Central endocannabinoid signaling is known to be responsive to stressful stimuli; however, there is no research to date characterizing the effects of stress on peripheral endocannabinoid content. The current study examined serum content of the endocannabinoid ligands N-arachidonylethanolamide (anandamide; AEA) and 2-arachidonoylglycerol (2-AG), and the non-cannabinoid N-acyl ethanolamine (NAE) molecules palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) under basal conditions, immediately following the Trier Social Stress Test (TSST), and 30 min thereafter, in 15 medication-free women diagnosed with major depression, and 15 healthy matched controls. Basal serum concentrations of AEA and 2-AG, but not PEA or OEA, were significantly reduced in women with major depression relative to matched controls, indicating a deficit in peripheral endocannabinoid activity. Immediately following the TSST, serum 2-AG concentrations were increased compared to baseline; serum AEA concentration was unchanged at this time point. Serum concentrations of PEA and OEA were significantly lower than baseline 30 min following the cessation of the TSST. The magnitude of these responses did not differ between depressed and control subjects. These are the first data to demonstrate that the peripheral endocannabinoid/NAE system is responsive to exposure to stress.

    Topics: Adult; Amides; Arachidonic Acids; Cannabinoid Receptor Modulators; Case-Control Studies; Depressive Disorder, Major; Endocannabinoids; Ethanolamines; Female; Glycerides; Humans; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Stress, Psychological

2009
Simultaneous quantitative analysis of N-acylethanolamides in clinical samples.
    Analytical biochemistry, 2009, Dec-01, Volume: 395, Issue:1

    A simple and rapid analytical method is described for the simultaneous quantitative analysis of three different N-acylethanolamides in human biological samples: anandamide (AEA), oleoylethanolamide (OEA), and palmitoylethanolamide (PEA). The method is based on a new hybrid solid phase extraction-precipitation technology followed by ultra-performance liquid chromatography/mass spectrometry (UPLC/MS) analysis using d(4)-AEA as the internal standard. The method is linear up to 100ng/ml with a limit of quantitation of 50pg/ml for AEA and 100pg/ml for OEA and PEA. Good reproducibility, accuracy, and precision were demonstrated during the method validation. Application of this new methodology to the analysis of clinical study samples is presented.

    Topics: Adolescent; Adult; Amides; Amidohydrolases; Arachidonic Acids; Calibration; Cannabinoids; Chromatography, High Pressure Liquid; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Female; Humans; Leukocytes, Mononuclear; Male; Middle Aged; Molecular Structure; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Reproducibility of Results; Semen; Solid Phase Microextraction; Tandem Mass Spectrometry; Young Adult

2009
Plasma endocannabinoid levels in multiple sclerosis.
    Journal of the neurological sciences, 2009, Dec-15, Volume: 287, Issue:1-2

    Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS. Therapies that affect the endocannabinoid (EC) system may have immunomodulatory, symptomatic and neuroprotective effects.. The aim of this study was to determine how levels of EC and related compounds are altered in MS.. Plasma and whole blood were collected from 24 MS patients (10 relapsing-remitting (RR); 8 secondary-progressive (SP); 6 primary-progressive (PP); 19 females; 25-66 years) and 17 controls (10 females; 22-62 years). Plasma EC and related compounds were quantified by liquid chromatography-tandem mass spectrometry. Fatty acid amide hydrolase (FAAH), cannabinoid receptors CB(1) and CB(2) mRNA were measured by quantitative reverse transcriptase-polymerase chain reaction.. Anandamide (AEA) and palmitoylethanolamide (PEA) were higher in RRMS compared to controls (p=0.001 and p=0.027). AEA, PEA and oleoylethanolamide were also increased in SPMS plasma (p=0.001, p=0.004, and p=0.005). PPMS patients had higher AEA plasma levels compared to controls (p=0.009). FAAH mRNA was decreased in SPMS (p=0.04) but not in RRMS or PPMS blood. CB(1) (p=0.012) and CB(2) mRNA (p=0.003) were increased in the PPMS.. The EC system is altered in MS. It may be dynamically modulated depending on the subtype of the disease, but further studies with larger subgroups are needed to confirm this.

    Topics: Adult; Aged; Amides; Amidohydrolases; Arachidonic Acids; Brain; Brain Chemistry; Cannabinoid Receptor Modulators; Cannabinoids; Chromatography, Liquid; Cytoprotection; Disability Evaluation; Endocannabinoids; Ethanolamines; Female; Humans; Male; Mass Spectrometry; Middle Aged; Multiple Sclerosis; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Receptors, Cannabinoid; RNA, Messenger

2009
An endocannabinoid signaling system modulates anxiety-like behavior in male Syrian hamsters.
    Psychopharmacology, 2008, Volume: 200, Issue:3

    An endocannabinoid signaling system has not been identified in hamsters.. We examined the existence of an endocannabinoid signaling system in Syrian hamsters using neuroanatomical, biochemical, and behavioral pharmacological approaches.. The distribution of cannabinoid receptors was mapped, and membrane fatty-acid amide hydrolase (FAAH) activity and levels of fatty-acid amides were measured in hamster brain. The impact of cannabinoid CB1 receptor blockade and inhibition of FAAH was evaluated in the elevated plus maze, rota-rod test, and models of unconditioned and conditioned social defeat.. A characteristic heterogeneous distribution of cannabinoid receptors was detected in hamster brain using [3H]CP55,940 binding and autoradiography. The FAAH inhibitor URB597 inhibited FAAH activity (IC50 = 12.8 nM) and elevated levels of fatty-acid amides (N-palmitoyl ethanolamine and N-oleoyl ethanolamine) in hamster brain. Anandamide levels were not reliably altered. The cannabinoid agonist WIN55,212-2 (1- 10 mg/kg i.p.) induced CB1-mediated motor ataxia. Blockade of CB1 with rimonabant (5 mg/kg i.p.) induced anxiogenic-like behavior in the elevated plus maze. URB597 (0.1-0.3 mg/kg i.p.) induced CB1-mediated anxiolytic-like effects in the elevated plus maze, similar to the benzodiazepine diazepam (2 mg/kg i.p.). Diazepam (2-6 mg/kg i.p.) suppressed the expression, but not the acquisition, of conditioned defeat. By contrast, neither URB597 (0.3-3.0 mg/kg i.p.) nor rimonabant (5 mg/kg i.p.) altered unconditioned or conditioned social defeat or rota-rod performance.. Endocannabinoids engage functional CB1 receptors in hamster brain to suppress anxiety-like behavior and undergo enzymatic hydrolysis catalyzed by FAAH. Our results further suggest that neither unconditioned nor conditioned social defeat in the Syrian hamster is dependent upon cannabinoid CB1 receptor activation.

    Topics: Aggression; Amides; Amidohydrolases; Animals; Arousal; Autoradiography; Benzamides; Brain; Cannabinoid Receptor Modulators; Carbamates; Cricetinae; Dominance-Subordination; Endocannabinoids; Ethanolamines; Fear; Male; Maze Learning; Mesocricetus; Oleic Acids; Palmitic Acids; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Rimonabant; Rotarod Performance Test; Signal Transduction; Social Environment

2008
The analgesic effect of N-arachidonoyl-serotonin, a FAAH inhibitor and TRPV1 receptor antagonist, associated with changes in rostral ventromedial medulla and locus coeruleus cell activity in rats.
    Neuropharmacology, 2008, Volume: 55, Issue:7

    We evaluated the effects of intra-periaqueductal grey (PAG) N-arachidonoyl-serotonin (AA-5-HT), a compound with a "dual" ability to inhibit the fatty acid amide hydrolase (FAAH) and to antagonize transient receptor vanilloid type 1 (TRPV1) receptors, on endocannabinoid levels, rostral ventromedial medulla (RVM) ON and OFF cell activities, thermal nociception (tail flick in anaesthetized rats) and formalin-induced nocifensive responses in awake rats. AA-5-HT increased endocannabinoid levels in the PAG and induced analgesia. Paradoxically, it also depressed the RVM OFF cell, as well as the ON cell activities. The effect of AA-5-HT was mimicked by co-injecting the selective FAAH inhibitor URB597 and the selective TRPV1 antagonist I-RTX into the PAG, which also induced analgesia and inhibition of ON and OFF cell ongoing activities. The recruitment of "alternative" pathways, such as PAG-locus coeruleus (LC)-spinal cord might be responsible for AA-5-HT effect since we found evidence that (i) intra-PAG AA-5-HT increased LC neuron firing activities, and (ii) intrathecal phentolamine or ketanserin prevented the analgesic effect of AA-5-HT. Moreover, intra-PAG AA-5-HT prevented the changes in the ON and OFF cells firing activity induced by intra-paw formalin, and it inverted the formalin-induced increase in LC adrenergic cell activity. All AA-5-HT effects were antagonized by cannabinoid CB1 and TRPV1 receptor antagonists thus suggesting that co-localization of these receptors in the PAG can be an appropriate neural substrate for AA-5-HT-induced analgesia.

    Topics: Adrenergic Antagonists; Amides; Amidohydrolases; Analgesics; Animals; Arachidonic Acids; Electrophysiology; Endocannabinoids; Ethanolamines; Extracellular Space; Formaldehyde; Locus Coeruleus; Male; Medulla Oblongata; Microinjections; Oleic Acids; Pain Measurement; Palmitic Acids; Rats; Reaction Time; Serotonin; Serotonin Antagonists; TRPV Cation Channels

2008
'Entourage' effects of N-palmitoylethanolamide and N-oleoylethanolamide on vasorelaxation to anandamide occur through TRPV1 receptors.
    British journal of pharmacology, 2008, Volume: 155, Issue:6

    The endocannabinoid N-arachidonoylethanolamide (anandamide) is co-synthesized with other N-acylethanolamides, namely N-palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA), which have been shown to potentiate anandamide responses (so-called 'entourage effects') in non-vascular tissues. It remains unclear whether such interactions occur in the circulation.. In rat isolated small mesenteric arteries, the effects of PEA and OEA on relaxation to anandamide and tissue contents of the N-acylethanolamides were examined under myographic conditions.. Anandamide-induced relaxation was potentiated by pretreatment with PEA (10 microM) or OEA (1 microM), or in combination. The potentiation by PEA and OEA was endothelium-independent and abolished by treatment with capsaicin (10 microM), which desensitizes the transient receptor potential vanilloid type 1 (TRPV1) receptor system, or by the TRPV1 receptor antagonist, N-(3-methoxyphenyl)-4-chlorocinnamide (SB366791) (2 microM). It was also observed at molar ratios of anandamide and PEA (or OEA) similar to those found in mesenteric arteries. PEA and inhibition of anandamide hydrolysis by 3'-carbamoyl-biphenyl-3-yl-cyclohexylcarbamate (URB597) (1 microM) additively potentiated anandamide responses. On the other hand, PEA and OEA also induced vasorelaxation per se (rank order of potency: anandamide>OEA>PEA), but relaxation to the three N-acylethanolamides displayed different sensitivity to treatment with capsaicin, SB366791 and URB597. For example, relaxations to anandamide and OEA, but not PEA, were attenuated by both capsaicin and SB366791.. This study shows that PEA and OEA potentiate relaxant responses to anandamide through TRPV1 receptors in rat small mesenteric arteries. The congeners also induce vasorelaxation per se, suggesting a function for the N-acylethanolamides in vascular control.

    Topics: Amides; Animals; Arachidonic Acids; Dose-Response Relationship, Drug; Drug Combinations; Endocannabinoids; Ethanolamines; Male; Mesenteric Artery, Superior; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Rats; Rats, Wistar; TRPV Cation Channels; Vasodilation

2008
Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2008, Dec-17, Volume: 28, Issue:51

    Nicotine stimulates the activity of mesolimbic dopamine neurons, which is believed to mediate the rewarding and addictive properties of tobacco use. Accumulating evidence suggests that the endocannabinoid system might play a major role in neuronal mechanisms underlying the rewarding properties of drugs of abuse, including nicotine. Here, we investigated the modulation of nicotine effects by the endocannabinoid system on dopamine neurons in the ventral tegmental area with electrophysiological techniques in vivo and in vitro. We discovered that pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme that catabolizes fatty acid ethanolamides, among which the endocannabinoid anandamide (AEA) is the best known, suppressed nicotine-induced excitation of dopamine cells. Importantly, this effect was mimicked by the administration of the FAAH substrates oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), but not methanandamide, the hydrolysis resistant analog of AEA. OEA and PEA are naturally occurring lipid signaling molecules structurally related to AEA, but devoid of affinity for cannabinoid receptors. They blocked the effects of nicotine by activation of the peroxisome proliferator-activated receptor-alpha (PPAR-alpha), a nuclear receptor transcription factor involved in several aspects of lipid metabolism and energy balance. Activation of PPAR-alpha triggered a nongenomic stimulation of tyrosine kinases, which might lead to phosphorylation and negative regulation of neuronal nicotinic acetylcholine receptors. These data indicate for the first time that the anorexic lipids OEA and PEA possess neuromodulatory properties as endogenous ligands of PPAR-alpha in the brain and provide a potential new target for the treatment of nicotine addiction.

    Topics: Amides; Amidohydrolases; Animals; Appetite Depressants; Arachidonic Acids; Benzamides; Cannabinoid Receptor Antagonists; Carbamates; Dopamine; Endocannabinoids; Enzyme Activation; Enzyme Inhibitors; Ethanolamines; Injections, Intraventricular; Lipoxygenase Inhibitors; Male; Neurons; Nicotine; Oleic Acids; Organ Culture Techniques; Palmitic Acids; Patch-Clamp Techniques; Piperidines; PPAR alpha; Protein-Tyrosine Kinases; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptors, Cannabinoid; Rimonabant; Ventral Tegmental Area

2008
Effect of acylethanolamides on lipid peroxidation and paraoxonase activity.
    BioFactors (Oxford, England), 2008, Volume: 33, Issue:3

    N-acylethanolamides (NAEs) are hydrophobic molecules synthesized in many tissues. An increase in the plasma levels of NAEs has been observed in human diseases. Previous studies have suggested that NAEs could exert a protective effect against oxidative stress. Aim of the study was to investigate whether NAEs (oleoylethanolamide, palmitoylethanolamide and anandamide), differing for acyl chain length and unsaturation, exert a protective role against plasma lipid peroxidation triggered by incubation with Cu2+2 or AAPH (2,2'-azobis(2-amidinopropane) dihydrochloride). Moreover, we investigated the effect of NAEs on the activity of HDL-associated paraoxonase (PON1), an enzyme involved in the antioxidant end anti-inflammatory role of human high density lipoproteins (HDL). The results demonstrated that the NAEs protect plasma lipids and PON1 activity against AAPH and/or copper-induced oxidation.

    Topics: Adult; Amides; Amidines; Arachidonic Acids; Aryldialkylphosphatase; Endocannabinoids; Ethanolamines; Humans; Lipid Peroxidation; Middle Aged; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides

2008
Inhibitory effect of the anorexic compound oleoylethanolamide on gastric emptying in control and overweight mice.
    Journal of molecular medicine (Berlin, Germany), 2008, Volume: 86, Issue:4

    Gastric emptying regulates food intake. Oleoylethanolamide (OEA), an endogenous acylethanolamide chemically related to the endocannabinoid anandamide, inhibits food intake, but its effect on gastric emptying is unknown. Here, we investigated the effect and the role of OEA on gastric emptying in mice fed either a standard (STD) or a high-fat diet (HFD) for 14 weeks. Gastric emptying was reduced by OEA, but not by its saturated analog, palmitoylethanolamide. The effect of OEA was unaffected by rimonabant (cannabinoid CB1 receptor antagonist), SR144528 (cannabinoid CB2 receptor antagonist), 5'-iodoresiniferatoxin (transient receptor potential vanilloid type 1 antagonist), or MK886 (peroxisome proliferator-activated receptor-alpha) antagonist. Compared to STD mice, HFD mice showed delayed gastric emptying and higher levels of gastric OEA. HFD-induced increase in OEA levels was accompanied by increased expression of the OEA-synthesizing enzyme N-acyl-phosphatidylethanolamine-selective phospholipase D and decreased expression of the OEA-degrading enzyme fatty acid amide hydrolase. These results might suggest that elevation of gastric OEA could possibly contribute to the delayed gastric emptying observed in HFD-fed animals. HFD regulates OEA levels in the stomach through an increase of its biosynthesis and a decrease of its enzymatic degradation. The inhibitory effect of OEA on gastric emptying here observed might underlie part of the anorexic effects of this compound previously reported.

    Topics: Amides; Animals; Appetite Depressants; Cannabinoids; Eating; Endocannabinoids; Ethanolamines; Gastric Emptying; Male; Mice; Mice, Inbred C57BL; Mice, Obese; Oleic Acids; Palmitic Acids

2008
Determination of anandamide and other fatty acyl ethanolamides in human serum by electrospray tandem mass spectrometry.
    Analytical biochemistry, 2007, Feb-15, Volume: 361, Issue:2

    We developed a new selective liquid chromatography-electrospray ionization-tandem mass spectrometry method for the identification and quantification of anandamide (AEA), an endogenous cannabinoid receptor ligand, and other bioactive fatty acid ethanolamides (FAEs) in biological samples. Detection limit (0.025 pmol for AEA and 0.1 pmol for palmitoylethanolamide (PEA) and oleoylethanolamide (OEA)) and quantification limit (0.2 pmol for AEA and 0.4 pmol for OEA and PEA) were in the high fmol to low pmol range for all analytes. Linear correlations (r(2)=0.99) were observed in the calibration curves for standard AEA over the range of 0.025-25 pmol and for standard PEA and OEA over the range of 0.1-500 pmol. This method provides a time-saving and sensitive alternative to existing methods for the analysis of FAEs in biological samples.

    Topics: Amides; Arachidonic Acids; Chromatography, Liquid; Endocannabinoids; Ethanolamines; Female; Humans; Male; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Reproducibility of Results; Sensitivity and Specificity; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry

2007
Effects of the fatty acid amide hydrolase inhibitor URB597 on the sleep-wake cycle, c-Fos expression and dopamine levels of the rat.
    European journal of pharmacology, 2007, May-07, Volume: 562, Issue:1-2

    Our group has described previously that the endogenous cannabinoid anandamide induces sleep. The hydrolysis of this lipid involves the activity of the fatty acid amide hydrolase (FAAH), which additionally catalyzes the degradation of the satiety factor oleoylethanolamide and the analgesic-inducing lipid palmitoylethanolamide. It has been demonstrated that the inhibition of the FAAH by URB597 increases levels of anandamide, oleoylethanolamide and palmitoylethanolamide in the brain of rats. In order to determinate the physiological properties of the FAAH inhibition on the sleep modulation, we report the pharmacological effects on the sleep-wake cycle of the rat after i.c.v. administrations of URB597, oleoylethanolamide or palmitoylethanolamide (10, 20 microg/5 microl). Separate unilateral i.c.v. injections of 3 compounds during the lights-on period, increased wakefulness and decreased slow wave (SW) sleep in rats in a dose-dependent fashion. We additionally found out that, compared to controls, c-Fos immunoreactivity in hypothalamus and dorsal raphe nucleus was increased in rats that received URB597, oleoylethanolamide or palmitoylethanolamide (10, 20 microg/5 microl, i.c.v.). Next, we found that after an injection of the compounds, levels of dopamine were increased whereas extracellular levels of levodopa (l-DOPA) were decreased. These findings indicate that that inhibition of the FAAH, via URB597, modulates waking. These effects were mimicked separately by the administration of oleoylethanolamide or palmitoylethanolamide. The alertness induced by the compounds tested here activated wake-promoting brain regions and they also induced the release of dopamine. Our results suggest that FAAH activity as well as two molecules that are catalyzed by this enzyme, oleoylethanolamide and palmitoylethanolamide, participate in the regulation of the waking state. Alternative approaches to treat sleep disorders such as excessive somnolence might consider the use of the URB597, oleoylethanolamide or palmitoylethanolamide since all compounds enhance waking.

    Topics: Amides; Amidohydrolases; Analgesics; Animals; Benzamides; Carbamates; Dopamine; Dose-Response Relationship, Drug; Endocannabinoids; Ethanolamines; Hippocampus; Injections, Intraventricular; Levodopa; Male; Microdialysis; Nucleus Accumbens; Oleic Acids; Palmitic Acids; Proto-Oncogene Proteins c-fos; Raphe Nuclei; Rats; Rats, Wistar; Sleep; Time Factors; Wakefulness

2007
Role and regulation of acylethanolamides in energy balance: focus on adipocytes and beta-cells.
    British journal of pharmacology, 2007, Volume: 152, Issue:5

    The endocannabinoid, arachidonoylethanolamide (AEA), and the peroxisome proliferator-activated receptor (PPAR)-alpha ligand, oleylethanolamide (OEA) produce opposite effects on lipogenesis. The regulation of OEA and its anti-inflammatory congener, palmitoylethanolamide (PEA), in adipocytes and pancreatic beta-cells has not been investigated. We report here the results of studies on acylethanolamide regulation in these cells during obesity and hyperglycaemia, and provide an overview of acylethanolamide role in metabolic control. We analysed by liquid chromatography-mass spectrometry OEA and PEA levels in: 1) mouse 3T3F442A adipocytes during insulin-induced differentiation, 2) rat insulinoma RIN m5F beta-cells kept in 'low' or 'high' glucose, 3) adipose tissue and pancreas of mice with high fat diet-induced obesity (DIO), and 4) in visceral fat or blood of obese or type 2 diabetes (T2D) patients. In adipocytes, OEA levels remain unchanged during differentiation, whereas those of PEA decrease significantly, and are under the negative control of both leptin and PPAR-gamma. PEA is significantly downregulated in subcutaneous adipose tissue of DIO mice. In RIN m5F insulinoma beta-cells, OEA and PEA levels are inhibited by 'very high' glucose, this effect being enhanced by insulin, whereas in cells kept for 24 h in 'high' glucose, they are stimulated by both glucose and insulin. Elevated OEA and PEA levels are found in the blood of T2D patients. Reduced PEA levels in hypertrophic adipocytes might play a role in obesity-related pro-inflammatory states. In beta-cells and human blood, OEA and PEA are down- or up-regulated under conditions of transient or chronic hyperglycaemia, respectively.

    Topics: 3T3 Cells; Adipocytes; Adult; Aged; Amides; Animals; Arachidonic Acids; Diabetes Mellitus, Type 2; Endocannabinoids; Energy Metabolism; Ethanolamines; Female; Humans; Insulin-Secreting Cells; Leptin; Male; Mice; Mice, Inbred C57BL; Middle Aged; Models, Biological; Obesity; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; PPAR gamma; Review Literature as Topic; Structure-Activity Relationship

2007
Oxyhomologues of anandamide and related endolipids: chemoselective synthesis and biological activity.
    Journal of medicinal chemistry, 2006, Apr-06, Volume: 49, Issue:7

    The three amide oxyhomologues of the endolipids N-arachidonoylethanolamine (anandamide, AEA, 1a), N-oleoylethanolamine (OEA, 2a), and N-palmitoylethanolamine (PEA, 3a) have been prepared in a chemoselective way, capitalizing on the easy availability of O-[2-(triisopropylsilyoxy)ethyl]hydroxylamine (6) and the surprising complementary selectivity observed in the acylation of N-[2-(tert-butyldiphenylsilyloxy)ethyl]hydroxylamine (7) with the PPAA and the DCC/HOBT protocols. Reversal of the cannabinoid CB(1)/CB(2) receptor affinity ratio was observed for the first time in a derivative of anandamide (the O-alkyl-N-acyl hydroxylamine 1b), while the other oxyhomologues (1c and 1d) showed only marginal cannabimimetic activity. Compounds with unsaturated acyl chains generally retained vanilloid activity and showed an increased stability toward FAAH compared to their corresponding ethanolamides. Taken together, these observation show that oxyhomologation has a pronounced effect on both the pharmacodynamic and the pharmacokinetic properties of endogenous ethanolamides, suggesting a general relevance of this maneuver for the modification of amide pharmacophores.

    Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Cell Line; Chlorocebus aethiops; Endocannabinoids; Ethanolamines; Humans; Hydrolysis; Hydroxylamines; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Rats; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Structure-Activity Relationship; TRPV Cation Channels

2006
Diurnal variation of arachidonoylethanolamine, palmitoylethanolamide and oleoylethanolamide in the brain of the rat.
    Life sciences, 2006, May-30, Volume: 79, Issue:1

    The diurnal variations of the endocannabinoid arachidonoylethanolamine (anandamide, ANA) as well as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) were detected and quantified in cerebrospinal fluid (CSF), pons, hippocampus, and hypothalamus in the rat over 24 h using HPLC/MS. In CSF, the 3 compounds presented an increase in their concentration during the lights-on period and a remarkable decrease in their values during the lights-off period. In the pons, ANA, PEA and OEA showed the maximum values during the dark phase. On the other hand, we found that in the hippocampus, ANA increased its concentration during the lights-off period and PEA showed the highest peak at the beginning of the same period. OEA concentration showed no diurnal variations in the hippocampus. Finally, in the hypothalamus, ANA rose during the lights-on period whereas PEA and OEA presented the highest concentration at the end of the lights-off period. We postulate that all compounds are likely to be accumulated in parenchyma during the lights-off period (when animal is awake) and then, released into the CSF in order to reach target regions in turn to modulate diverse behaviors, such as feeding and sleep.

    Topics: Amides; Animals; Arachidonic Acids; Brain Chemistry; Chromatography, High Pressure Liquid; Circadian Rhythm; Endocannabinoids; Ethanolamines; Hippocampus; Hypothalamus; Male; Mass Spectrometry; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Pons; Rats; Rats, Sprague-Dawley

2006
The postmortal accumulation of brain N-arachidonylethanolamine (anandamide) is dependent upon fatty acid amide hydrolase activity.
    Journal of lipid research, 2005, Volume: 46, Issue:2

    N-arachidonylethanolamine (AEA) accumulates during brain injury and postmortem. Because fatty acid amide hydrolase (FAAH) regulates brain AEA content, the purpose of this study was to determine its role in the postmortal accumulation of AEA using FAAH null mice. As expected, AEA content in immediately frozen brain tissue was significantly greater in FAAH-deficient (FAAH-/-) than in wild-type mice. However, AEA content was significantly lower in brains from FAAH-/- mice at 5 and 24 h postmortem. Similarly, wild-type mice treated in vivo with a FAAH inhibitor (URB532) had significantly lower brain AEA content 24 h postmortem compared with controls. These data indicate that FAAH contributes significantly to the postmortal accumulation of AEA. In contrast, the accumulations of two other N-acylethanolamines, N-oleoylethanolamine (OEA) and N-palmitoylethanolamine (PEA), were not reduced at 24 h postmortem in either the FAAH-/- mice or mice treated with URB532. FAAH-/- mice accumulated significantly less ethanolamine at 24 h postmortem compared with wild-type mice, suggesting that FAAH activity plays a role in the accumulation of ethanolamine postmortem. These data demonstrate that FAAH activity differentially affects AEA and OEA/PEA contents postmortem and suggest that AEA formation specifically occurs via an ethanolamine-dependent route postmortem.

    Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Brain; Endocannabinoids; Ethanolamine; Ethanolamines; Female; Hydrolysis; Lipid Metabolism; Male; Mice; Mice, Inbred C57BL; Mice, Inbred ICR; Mice, Transgenic; Oleic Acids; Palmitic Acids; Phosphatidylethanolamines; Pisum sativum; Polyunsaturated Alkamides; Postmortem Changes; Time Factors

2005
Release of fatty acid amides in a patient with hemispheric stroke: a microdialysis study.
    Stroke, 2002, Volume: 33, Issue:8

    Excitotoxic insults such as stroke may induce release of fatty acid ethanolamides (FAEs), contributing to the downstream events in the ischemic cascade. We therefore studied release of FAEs such as anandamide, palmitylethanolamide (PEA), and oleylethanolamide (OEA) in the brain of a patient suffering from malignant hemispheric infarction treated with hypothermia.. A patient with life-threatening hemispheric stroke was treated with moderate hypothermia (33 degrees C) that was maintained for 3 days, followed by a 3-day rewarming period. Microdialysis was applied to measure glutamate, lactate, and glycerol by using a microdialysis analyzer. FAEs were measured by microdialysis coupled with high-performance liquid chromatography/mass spectrometry. Release of neuroprotective fatty amides occurred within the first day after ischemia and reached high concentrations for all 3 substances in tissue surrounding the primary ischemic lesion: anandamide up to 42 pmol/mL, PEA up to 120 pmol/mL, and OEA up to 242 pmol/mL. There was a significant correlation with elevation of lactate as early marker for the hypoxic insult.. This is the first report demonstrating release of FAEs in vivo during human stroke and may suggest contribution of the FAE signaling system to the pathophysiological events after ischemia.

    Topics: Aged; Amides; Arachidonic Acids; Brain; Brain Chemistry; Brain Ischemia; Endocannabinoids; Ethanolamines; Extracellular Space; Glutamic Acid; Glycerol; Hemiplegia; Humans; Hypothermia, Induced; Lactic Acid; Male; Microdialysis; Monitoring, Physiologic; Oleic Acid; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Sleep Stages; Stroke

2002
Gas chromatography-mass spectrometry analysis of endogenous cannabinoids in healthy and tumoral human brain and human cells in culture.
    Journal of neurochemistry, 2001, Volume: 76, Issue:2

    Endocannabinoids are lipid mediators thought to modulate central and peripheral neural functions. We report here gas chromatography-electron impact mass spectrometry analysis of human brain, showing that lipid extracts contain anandamide and 2-arachidonoylglycerol (2-AG), the most active endocannabinoids known to date. Human brain also contained the endocannabinoid-like compounds N-oleoylethanolamine, N-palmitoylethanolamine and N-stearoylethanolamine. Anandamide and 2-AG (0.16 +/- 0.05 and 0.10 +/- 0.05 nmol/mg protein, respectively) represented 7.7% and 4.8% of total endocannabinoid-like compounds, respectively. N-Palmitoyethanolamine was the most abundant (50%), followed by N-oleoyl (23.6%) and N-stearoyl (13.9%) ethanolamines. A similar composition in endocannabinoid-like compounds was found in human neuroblastoma CHP100 and lymphoma U937 cells, and also in rat brain. Remarkably, human meningioma specimens showed an approximately six-fold smaller content of all N-acylethanolamines, but not of 2-AG, and a similar decrease was observed in a human glioblastoma. These ex vivo results fully support the purported roles of endocannabinoids in the nervous system.

    Topics: Amides; Animals; Arachidonic Acids; Brain Chemistry; Brain Neoplasms; Cannabinoid Receptor Modulators; Cannabinoids; Endocannabinoids; Ethanolamines; Gas Chromatography-Mass Spectrometry; Glioblastoma; Glycerides; Humans; Lymphoma; Meningioma; Neuroblastoma; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Rats; Rats, Wistar; Reference Values; Stearic Acids; Tumor Cells, Cultured; U937 Cells

2001
Dopamine activation of endogenous cannabinoid signaling in dorsal striatum.
    Nature neuroscience, 1999, Volume: 2, Issue:4

    We measured endogenous cannabinoid release in dorsal striatum of freely moving rats by microdialysis and gas chromatography/mass spectrometry. Neural activity stimulated the release of anandamide, but not of other endogenous cannabinoids such as 2-arachidonylglycerol. Moreover, anandamide release was increased eightfold over baseline after local administration of the D2-like (D2, D3, D4) dopamine receptor agonist quinpirole, a response that was prevented by the D2-like receptor antagonist raclopride. Administration of the D1-like (D1, D5) receptor agonist SKF38393 had no such effect. These results suggest that functional interactions between endocannabinoid and dopaminergic systems may contribute to striatal signaling. In agreement with this hypothesis, pretreatment with the cannabinoid antagonist SR141716A enhanced the stimulation of motor behavior elicited by systemic administration of quinpirole. The endocannabinoid system therefore may act as an inhibitory feedback mechanism countering dopamine-induced facilitation of motor activity.

    Topics: 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine; Amides; Animals; Arachidonic Acids; Calcium; Cannabinoid Receptor Modulators; Corpus Striatum; Dopamine; Dopamine Agonists; Dopamine Antagonists; Endocannabinoids; Ethanolamines; Gas Chromatography-Mass Spectrometry; Glycerides; Hyperkinesis; Male; Microdialysis; Motor Activity; Oleic Acids; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Potassium; Pyrazoles; Quinpirole; Raclopride; Rats; Rats, Wistar; Receptors, Cannabinoid; Receptors, Dopamine D2; Receptors, Drug; Rimonabant; Salicylamides; Signal Transduction; Single-Blind Method; Sodium; Tetrodotoxin

1999