n-oleoylethanolamine has been researched along with arachidonoylserotonin* in 2 studies
2 other study(ies) available for n-oleoylethanolamine and arachidonoylserotonin
Article | Year |
---|---|
Inhibition of FAAH confers increased stem cell migration via PPARα.
Regenerative activity in tissues of mesenchymal origin depends on the migratory potential of mesenchymal stem cells (MSCs). The present study focused on inhibitors of the enzyme fatty acid amide hydrolase (FAAH), which catalyzes the degradation of endocannabinoids (anandamide, 2-arachidonoylglycerol) and endocannabinoid-like substances (N-oleoylethanolamine, N-palmitoylethanolamine). Boyden chamber assays, the FAAH inhibitors, URB597 and arachidonoyl serotonin (AA-5HT), were found to increase the migration of human adipose-derived MSCs. LC-MS analyses revealed increased levels of all four aforementioned FAAH substrates in MSCs incubated with either FAAH inhibitor. Following addition to MSCs, all FAAH substrates mimicked the promigratory action of FAAH inhibitors. Promigratory effects of FAAH inhibitors and substrates were causally linked to activation of p42/44 MAPKs, as well as to cytosol-to-nucleus translocation of the transcription factor, PPARα. Whereas PPARα activation by FAAH inhibitors and substrates became reversed upon inhibition of p42/44 MAPK activation, a blockade of PPARα left p42/44 MAPK phosphorylation unaltered. Collectively, these data demonstrate FAAH inhibitors and substrates to cause p42/44 MAPK phosphorylation, which subsequently activates PPARα to confer increased migration of MSCs. This novel pathway may be involved in regenerative effects of endocannabinoids whose degradation could be a target of pharmacological intervention by FAAH inhibitors. Topics: Adipose Tissue; Amides; Amidohydrolases; Arachidonic Acids; Benzamides; Carbamates; Cell Movement; Cells, Cultured; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Glycerides; Humans; Mesenchymal Stem Cells; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; PPAR alpha; Receptor, Cannabinoid, CB1; Serotonin | 2015 |
The analgesic effect of N-arachidonoyl-serotonin, a FAAH inhibitor and TRPV1 receptor antagonist, associated with changes in rostral ventromedial medulla and locus coeruleus cell activity in rats.
We evaluated the effects of intra-periaqueductal grey (PAG) N-arachidonoyl-serotonin (AA-5-HT), a compound with a "dual" ability to inhibit the fatty acid amide hydrolase (FAAH) and to antagonize transient receptor vanilloid type 1 (TRPV1) receptors, on endocannabinoid levels, rostral ventromedial medulla (RVM) ON and OFF cell activities, thermal nociception (tail flick in anaesthetized rats) and formalin-induced nocifensive responses in awake rats. AA-5-HT increased endocannabinoid levels in the PAG and induced analgesia. Paradoxically, it also depressed the RVM OFF cell, as well as the ON cell activities. The effect of AA-5-HT was mimicked by co-injecting the selective FAAH inhibitor URB597 and the selective TRPV1 antagonist I-RTX into the PAG, which also induced analgesia and inhibition of ON and OFF cell ongoing activities. The recruitment of "alternative" pathways, such as PAG-locus coeruleus (LC)-spinal cord might be responsible for AA-5-HT effect since we found evidence that (i) intra-PAG AA-5-HT increased LC neuron firing activities, and (ii) intrathecal phentolamine or ketanserin prevented the analgesic effect of AA-5-HT. Moreover, intra-PAG AA-5-HT prevented the changes in the ON and OFF cells firing activity induced by intra-paw formalin, and it inverted the formalin-induced increase in LC adrenergic cell activity. All AA-5-HT effects were antagonized by cannabinoid CB1 and TRPV1 receptor antagonists thus suggesting that co-localization of these receptors in the PAG can be an appropriate neural substrate for AA-5-HT-induced analgesia. Topics: Adrenergic Antagonists; Amides; Amidohydrolases; Analgesics; Animals; Arachidonic Acids; Electrophysiology; Endocannabinoids; Ethanolamines; Extracellular Space; Formaldehyde; Locus Coeruleus; Male; Medulla Oblongata; Microinjections; Oleic Acids; Pain Measurement; Palmitic Acids; Rats; Reaction Time; Serotonin; Serotonin Antagonists; TRPV Cation Channels | 2008 |