n-methylglutamate and methylamine

n-methylglutamate has been researched along with methylamine* in 5 studies

Other Studies

5 other study(ies) available for n-methylglutamate and methylamine

ArticleYear
Bacterial metabolism of methylated amines and identification of novel methylotrophs in Movile Cave.
    The ISME journal, 2015, Volume: 9, Issue:1

    Movile Cave, Romania, is an unusual underground ecosystem that has been sealed off from the outside world for several million years and is sustained by non-phototrophic carbon fixation. Methane and sulfur-oxidising bacteria are the main primary producers, supporting a complex food web that includes bacteria, fungi and cave-adapted invertebrates. A range of methylotrophic bacteria in Movile Cave grow on one-carbon compounds including methylated amines, which are produced via decomposition of organic-rich microbial mats. The role of methylated amines as a carbon and nitrogen source for bacteria in Movile Cave was investigated using a combination of cultivation studies and DNA stable isotope probing (DNA-SIP) using (13)C-monomethylamine (MMA). Two newly developed primer sets targeting the gene for gamma-glutamylmethylamide synthetase (gmaS), the first enzyme of the recently-discovered indirect MMA-oxidation pathway, were applied in functional gene probing. SIP experiments revealed that the obligate methylotroph Methylotenera mobilis is one of the dominant MMA utilisers in the cave. DNA-SIP experiments also showed that a new facultative methylotroph isolated in this study, Catellibacterium sp. LW-1 is probably one of the most active MMA utilisers in Movile Cave. Methylated amines were also used as a nitrogen source by a wide range of non-methylotrophic bacteria in Movile Cave. PCR-based screening of bacterial isolates suggested that the indirect MMA-oxidation pathway involving GMA and N-methylglutamate is widespread among both methylotrophic and non-methylotrophic MMA utilisers from the cave.

    Topics: Animals; Bacteria; Carbon-Nitrogen Ligases; Caves; Ecosystem; Glutamates; Methylamines; Methylophilaceae; Phylogeny; Polymerase Chain Reaction; RNA, Ribosomal, 16S; Romania

2015
Methylamine utilization via the N-methylglutamate pathway in Methylobacterium extorquens PA1 involves a novel flow of carbon through C1 assimilation and dissimilation pathways.
    Journal of bacteriology, 2014, Volume: 196, Issue:23

    Methylotrophs grow on reduced single-carbon compounds like methylamine as the sole source of carbon and energy. In Methylobacterium extorquens AM1, the best-studied aerobic methylotroph, a periplasmic methylamine dehydrogenase that catalyzes the primary oxidation of methylamine to formaldehyde has been examined in great detail. However, recent metagenomic data from natural ecosystems are revealing the abundance and importance of lesser-known routes, such as the N-methylglutamate pathway, for methylamine oxidation. In this study, we used M. extorquens PA1, a strain that is closely related to M. extorquens AM1 but is lacking methylamine dehydrogenase, to dissect the genetics and physiology of the ecologically relevant N-methylglutamate pathway for methylamine oxidation. Phenotypic analyses of mutants with null mutations in genes encoding enzymes of the N-methylglutamate pathway suggested that γ-glutamylmethylamide synthetase is essential for growth on methylamine as a carbon source but not as a nitrogen source. Furthermore, analysis of M. extorquens PA1 mutants with defects in methylotrophy-specific dissimilatory and assimilatory modules suggested that methylamine use via the N-methylglutamate pathway requires the tetrahydromethanopterin (H4MPT)-dependent formaldehyde oxidation pathway but not a complete tetrahydrofolate (H4F)-dependent formate assimilation pathway. Additionally, we present genetic evidence that formaldehyde-activating enzyme (FAE) homologs might be involved in methylotrophy. Null mutants of FAE and homologs revealed that FAE and FAE2 influence the growth rate and FAE3 influences the yield during the growth of M. extorquens PA1 on methylamine.

    Topics: Carbon; Energy Metabolism; Gene Deletion; Glutamates; Metabolic Flux Analysis; Metabolic Networks and Pathways; Methylamines; Methylobacterium extorquens; Oxidation-Reduction

2014
Genes of the N-methylglutamate pathway are essential for growth of Methylobacterium extorquens DM4 with monomethylamine.
    Applied and environmental microbiology, 2014, Volume: 80, Issue:11

    Monomethylamine (MMA, CH3NH2) can be used as a carbon and nitrogen source by many methylotrophic bacteria. Methylobacterium extorquens DM4 lacks the MMA dehydrogenase encoded by mau genes, which in M. extorquens AM1 is essential for growth on MMA. Identification and characterization of minitransposon mutants with an MMA-dependent phenotype showed that strain DM4 grows with MMA as the sole source of carbon, energy, and nitrogen by the N-methylglutamate (NMG) pathway. Independent mutations were found in a chromosomal region containing the genes gmaS, mgsABC, and mgdABCD for the three enzymes of the pathway, γ-glutamylmethylamide (GMA) synthetase, NMG synthase, and NMG dehydrogenase, respectively. Reverse transcription-PCR confirmed the operonic structure of the two divergent gene clusters mgsABC-gmaS and mgdABCD and their induction during growth with MMA. The genes mgdABCD and mgsABC were found to be essential for utilization of MMA as a carbon and nitrogen source. The gene gmaS was essential for MMA utilization as a carbon source, but residual growth of mutant DM4gmaS growing with succinate and MMA as a nitrogen source was observed. Plasmid copies of gmaS and the gmaS homolog METDI4690, which encodes a protein 39% identical to GMA synthetase, fully restored the ability of mutants DM4gmaS and DM4gmaSΔmetdi4690 to use MMA as a carbon and nitrogen source. Similarly, chemically synthesized GMA, the product of GMA synthetase, could be used as a nitrogen source for growth in the wild-type strain, as well as in DM4gmaS and DM4gmaSΔmetdi4690 mutants. The NADH:ubiquinone oxidoreductase respiratory complex component NuoG was also found to be essential for growth with MMA as a carbon source.

    Topics: Carbon; DNA Transposable Elements; Energy Metabolism; Gene Deletion; Gene Expression Profiling; Genetic Complementation Test; Glutamates; Metabolic Networks and Pathways; Methylamines; Methylobacterium extorquens; Multigene Family; Mutagenesis, Insertional; Nitrogen; Transcription, Genetic

2014
{gamma}-Glutamylmethylamide is an essential intermediate in the metabolism of methylamine by Methylocella silvestris.
    Applied and environmental microbiology, 2010, Volume: 76, Issue:13

    Methylocella silvestris BL2, a facultative methane utilizer, can grow on monomethylamine (MMA) as a sole carbon and nitrogen source. No activity of MMA dehydrogenase was detectable. Instead, this bacterium utilizes a methylated amino acid pathway (gamma-glutamylmethylamide [GMA] and N-methylglutamate [NMG]) for MMA metabolism. The activities of the two key enzymes in this pathway, GMA synthetase and NMG dehydrogenase, were found when the bacterium was grown on MMA. GMA was detected by high-performance liquid chromatography-mass spectrometry only when the bacterium was grown on MMA but not when it was grown on methanol. Proteomic analysis of soluble and membrane fractions of the proteome from MMA- and methanol-grown cultures revealed that an eight-gene cluster (Msil2632 to Msil2639) was induced by MMA and cotranscribed as an operon, as shown by reverse transcription-PCR. GMA-dissimilating enzyme activity was also detected when it was grown on MMA. Formaldehyde and ammonium production from GMA was dependent on glutamate but not on alpha-ketoglutarate. Marker exchange mutagenesis of a putative GMAS gene homologue (gmas, Msil2635) within this eight-gene cluster, with a kanamycin gene cassette, abolished growth of M. silvestris on MMA as either a sole carbon or a sole nitrogen source. Overall, our results suggest that gmas is essential in MMA metabolism by M. silvestris.

    Topics: Beijerinckiaceae; Chromatography, High Pressure Liquid; Culture Media; Gene Expression Regulation, Bacterial; Glutamates; Ligases; Mass Spectrometry; Methylamines; Multigene Family; Oxidoreductases; Proteomics; Reverse Transcriptase Polymerase Chain Reaction

2010
Ammonium and methylammonium uptake in a fertilizer-degrading strain of Ochrobactrum anthropi.
    Antonie van Leeuwenhoek, 2000, Volume: 77, Issue:3

    The transport of ammonium and methylammonium was studied in a strain of Ochrobactrum anthropi, a microorganism isolated from garden soil and able to degrade methyleneureas which are used as slow-release nitrogen fertilizer. The activity of both transport systems was determined using [14C]methylammonium. Differences between the two transport systems were observed with regard to their pH- and temperature dependence as well as their kinetic parameters and regulation during growth with various nitrogen sources. Ammonium transport was subject to repression by ammonium and to derepression in its absence, while the methylammonium carrier was induced in the presence of methylamine. The ammonium but not the methylammonium transport system was severely inhibited by ammonium, and metabolic poisons inhibited both uptake systems. The analysis of intracellular metabolites using thin-layer chromatography and matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry indicated that methylammonium was rapidly metabolized to N-methylglutamate via gamma-N-methylglutamine.

    Topics: Biodegradation, Environmental; Biological Transport; Carbon Isotopes; Carbonyl Cyanide m-Chlorophenyl Hydrazone; Chromatography, High Pressure Liquid; Cytoplasm; Fertilizers; Gene Expression Regulation, Bacterial; Glutamates; Hydrogen-Ion Concentration; Kinetics; Methylamines; Ochrobactrum anthropi; Quaternary Ammonium Compounds; Radioactive Tracers; Soil Microbiology; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Temperature; Uncoupling Agents

2000