n-methylaspartate has been researched along with sr 48692 in 2 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (50.00) | 18.2507 |
2000's | 1 (50.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Kombian, SB; Pittman, QJ; Saleh, TM; Zidichouski, JA | 1 |
Antonelli, T; De Mattei, M; Ferraro, L; Finetti, S; Fournier, J; Fuxe, K; Tanganelli, S; Tomasini, MC | 1 |
2 other study(ies) available for n-methylaspartate and sr 48692
Article | Year |
---|---|
Cholecystokinin and neurotensin inversely modulate excitatory synaptic transmission in the parabrachial nucleus in vitro.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Benzodiazepines; Benzodiazepinones; Cholecystokinin; Devazepide; Electric Conductivity; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; gamma-Aminobutyric Acid; Hormone Antagonists; Interneurons; N-Methylaspartate; Neural Inhibition; Neurons, Afferent; Neurotensin; Patch-Clamp Techniques; Phenylurea Compounds; Pons; Pyrazoles; Quinolines; Rats; Rats, Sprague-Dawley; Receptor, Cholecystokinin A; Receptors, Cholecystokinin; Receptors, Neurotensin; Synaptic Transmission; Tetrodotoxin | 1997 |
Neurotensin enhances endogenous extracellular glutamate levels in primary cultures of rat cortical neurons: involvement of neurotensin receptor in NMDA induced excitotoxicity.
Topics: Animals; Bisbenzimidazole; Calcium; Cells, Cultured; Cerebral Cortex; Chromatin; Coloring Agents; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Extracellular Space; Glutamic Acid; N-Methylaspartate; Naphthalenes; Neurons; Neurotensin; Neurotoxicity Syndromes; Peptide Fragments; Pyrazoles; Quinolines; Rats; Receptors, Neurotensin | 2004 |