n-methyl-1-2-dioleoylphosphatidylethanolamine has been researched along with 1-2-oleoylphosphatidylcholine* in 2 studies
2 other study(ies) available for n-methyl-1-2-dioleoylphosphatidylethanolamine and 1-2-oleoylphosphatidylcholine
Article | Year |
---|---|
Studies of phospholipid hydration by high-resolution magic-angle spinning nuclear magnetic resonance.
A sample preparation method using spherical glass ampoules has been used to achieve 1.5-Hz resolution in 1H magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of aqueous multilamellar dispersions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), serving to differentiate between slowly exchanging interlamellar and bulk water and to reveal new molecular-level information about hydration phenomena in these model biological membranes. The average numbers of interlamellar water molecules in multilamellar vesicles (MLVs) of DOPC and POPC were found to be 37.5 +/- 1 and 37.2 +/- 1, respectively, at a spinning speed of 3 kHz. Even at speeds as high as 9 kHz, the number of interlamellar waters remained as high as 31, arguing against dehydration effects for DOPC and POPC. Both homonuclear and heteronuclear nuclear Overhauser enhancement spectroscopy (NOESY and HOESY) were used to establish the location of water near the headgroup of a PC bilayer. 1H NMR comparisons of DOPC with a lipid that can hydrogen bond (monomethyldioleoylphosphatidylethanolamine, MeDOPE) showed the following trends: 1) the interlamellar water resonance was shifted to lower frequency for DOPC but to higher frequency for MeDOPE, 2) the chemical shift variation with temperature for interlamellar water was less than that of bulk water for MeDOPE MLVs, 3) water exchange between the two lipids was rapid on the NMR time scale if they were mixed in the same bilayer, 4) water exchange was slow if they were present in separate MLVs, and 5) exchange between bulk and interlamellar water was found by two-dimensional exchange experiments to be slow, and the exchange rate should be less than 157 Hz. These results illustrate the utility of ultra-high-resolution 1H MAS NMR for determining the nature and extent of lipid hydration as well as the arrangement of nuclei at the membrane/water interface. Topics: Biophysical Phenomena; Biophysics; Hydrogen; Lipid Bilayers; Liposomes; Magnetic Resonance Spectroscopy; Permeability; Phosphatidylcholines; Phosphatidylethanolamines; Phospholipids; Water | 1999 |
Calorimetric detection of curvature strain in phospholipid bilayers.
Phospholipids in biological membranes are arranged as bilayers. When constrained to pack into planar bilayers, certain phospholipids will form unstable structures as a consequence of their molecular shape and noncovalent bonding. This produces curvature strain which may provide energy for certain membrane processes. We demonstrate that an exothermic process associated with the relief of curvature strain can be detected calorimetrically. The enthalpy for the incorporation of a few percent lysophosphatidylcholine into large unilamellar vesicles of monomethyldioleoylphosphatidylethanolamine at pH 7.4 is exothermic but it is endothermic for stable bilayers such as this same lipid at pH 9 or dioleoylphosphatidylcholine at pH 7.4 or 9. The addition of lysophosphatidylcholine to monomethyldioleoylphosphatidylethanolamine at pH 7.4 is exothermic only for the addition of the first few percent of lysophosphatidylcholine and then it becomes endothermic. The size of the exothermic heat change is sensitive to changes in temperature, while the endothermic processes are relatively temperature-insensitive. The exothermic heat is also larger when 1 or 2 mol % of diolein is incorporated into vesicles of monomethyldioleoylphosphatidylethanolamine. These results are all consistent with the exothermic process corresponding to the relief of curvature strain in bilayers having a tendency to convert to the hexagonal phase. It provides a demonstration that considerable energy may be released upon the incorporation of certain molecules into membranes which have a low radius of spontaneous curvature. Topics: Biophysical Phenomena; Biophysics; Calorimetry; In Vitro Techniques; Lipid Bilayers; Molecular Conformation; Phosphatidylcholines; Phosphatidylethanolamines; Phospholipids; Thermodynamics | 1994 |