n-desmethyltamoxifen has been researched along with triphenylethylene* in 2 studies
2 other study(ies) available for n-desmethyltamoxifen and triphenylethylene
Article | Year |
---|---|
Modification of sphingolipid metabolism by tamoxifen and N-desmethyltamoxifen in acute myelogenous leukemia--Impact on enzyme activity and response to cytotoxics.
The triphenylethylene antiestrogen, tamoxifen, can be an effective inhibitor of sphingolipid metabolism. This off-target activity makes tamoxifen an interesting ancillary for boosting the apoptosis-inducing properties of ceramide, a sphingolipid with valuable tumor censoring activity. Here we show for the first time that tamoxifen and metabolite, N-desmethyltamoxifen (DMT), block ceramide glycosylation and inhibit ceramide hydrolysis (by acid ceramidase, AC) in human acute myelogenous leukemia (AML) cell lines and in AML cells derived from patients. Tamoxifen (1-10 μM) inhibition of AC in AML cells was accompanied by decreases in AC protein expression. Tamoxifen also depressed expression and activity of sphingosine kinase 1 (SphK1), the enzyme-catalyzing production of mitogenic sphingosine 1-phosphate (S1-P). Results from mass spectroscopy showed that tamoxifen and DMT (i) increased the levels of endogenous C16:0 and C24:1 ceramide molecular species, (ii) nearly totally halted production of respective glucosylceramide (GC) molecular species, (iii) drastically reduced levels of sphingosine (to 9% of control), and (iv) reduced levels of S1-P by 85%, in vincristine-resistant HL-60/VCR cells. The co-administration of tamoxifen with either N-(4-hydroxyphenyl)retinamide (4-HPR), a ceramide-generating retinoid, or a cell-deliverable form of ceramide, C6-ceramide, resulted in marked decreases in HL-60/VCR cell viability that far exceeded single agent potency. Combination treatments resulted in synergistic apoptotic cell death as gauged by increased Annexin V binding and DNA fragmentation and activation of caspase-3. These results show the versatility of adjuvant triphenylethylene with ceramide-centric therapies for magnifying therapeutic potential in AML. Such drug regimens could serve as effective strategies, even in the multidrug-resistant setting. Topics: Cytotoxins; Enzyme Activation; Estrogen Antagonists; HL-60 Cells; Humans; Leukemia, Myeloid, Acute; Lipid Metabolism; Phosphotransferases (Alcohol Group Acceptor); Sphingolipids; Stilbenes; Tamoxifen; Tumor Cells, Cultured | 2015 |
Triphenylethylenes: a new class of protein kinase C inhibitors.
The Ca2+- and phospholipid-dependent phosphotransferase activity of protein kinase C was inhibited by the triphenylethylene compounds clomiphene [drug concentration causing 50% inhibition (IC50) = 25 microM], 4-hydroxytamoxifen (IC50 = 25 microM), and N-desmethyltamoxifen (IC50 = 8 microM). The Ca2+- and phospholipid-independent phosphorylation of protamine sulfate, which is catalyzed by protein kinase C, was not inhibited by the triphenylethylenes, suggesting that they do not interact directly with the active site of protein kinase C. The inhibitory potency of each triphenylethylene was reduced when the phospholipid concentration was increased, providing evidence that these drugs inhibited protein kinase C by interacting with phospholipids. The potencies of the effects of the triphenylethylenes on protein kinase C in the lipid environment of intact cells were evaluated by determining their efficacies in the inhibition of [3H]phorbol 12,13-dibutyrate (PDBu) binding to mouse embryo C3H/10T1/2 cells. Micromolar concentrations of each drug inhibited [3H]PDBu binding in these cells. N-Desmethyltamoxifen, 4-hydroxytamoxifen, and tamoxifen inhibited protein kinase C with the same order of potency as that which has been reported for their inhibition of MCF-7 cell growth by Reddel et al. (1983). N-Desmethyltamoxifen and 4-hydroxytamoxifen were also more potent than tamoxifen in the inhibition of the growth of mouse embryo fibroblast C3H/10T1/2 cells. These correlations suggest that the mechanism of growth inhibition by tamoxifen and its metabolites includes interactions with protein kinase C. Topics: Animals; Brain; Cells, Cultured; Estrogen Antagonists; Fibroblasts; Mice; Phorbol 12,13-Dibutyrate; Phorbol Esters; Protein Kinase C; Rats; Stilbenes; Structure-Activity Relationship; Tamoxifen | 1986 |