n-acetylmethionine has been researched along with bromobenzene* in 2 studies
2 other study(ies) available for n-acetylmethionine and bromobenzene
Article | Year |
---|---|
Inhibition of glutathione synthesis with propargylglycine enhances N-acetylmethionine protection and methylation in bromobenzene-treated Syrian hamsters.
The finding that liver necrosis caused by the environmental glutathione (GSH)-depleting chemical, bromobenzene (BB) is associated with marked impairment in O- and S-methylation of BB metabolites in Syrian hamsters raises questions concerning the role of methyl deficiency in BB toxicity. N-Acetylmethionine (NAM) has proven to be an effective antidote against BB toxicity when given after liver GSH has been depleted extensively. The mechanism of protection by NAM may occur via a replacement of methyl donor and/or via an increase of GSH synthesis. If replacement of the methyl donor is an important process, then blocking the resynthesis of GSH in the methyl-repleted hamsters should not decrease NAM protection. This hypothesis was examined in this study. Propargylglycine (PPG), an irreversible inhibitor of cystathionase, was used to inhibit the utilization of NAM for GSH resynthesis. Two groups of hamsters were pretreated with an intraperitoneal (ip) dose of PPG (30 mg/kg) or saline 24 h before BB administration (800 mg/kg, ip). At 5 h after BB treatment, an ip dose of NAM (1200 mg/kg) was given. Light microscopic examinations of liver sections obtained 24 h after BB treatment indicated that NAM provided better protection (P < 0.05) in the PPG + BB + NAM group than in the BB + NAM group. Liver GSH content, however, was lower in the PPG + BB + NAM group than in the BB + NAM group. The Syrian hamster has a limited capability to N-deacetylated NAM. The substitution of NAM with methionine (Met; 450 mg/kg) resulted in a higher level of GSH in the BB + Met group than in the BB + NAM group (P < 0.05). The enhanced protection by PPG in the PPG + BB + NAM group was accompanied by higher (P < 0.05) urinary excretions of specificO- and S-methylated bromothiocatechols than in the BB + NAM group. The results suggest that NAM protection occurs primarily via a replacement of the methyl donor and that methyl deficiency occurring in response to GSH repletion plays a potential role in BB toxicity. Topics: Alkynes; Animals; Bromobenzenes; Catechols; Cricetinae; Cystathionine gamma-Lyase; Enzyme Inhibitors; Glutathione; Glycine; Kinetics; Liver; Male; Mesocricetus; Methionine; Methylation; Necrosis; Sulfhydryl Compounds | 1999 |
Prevention of bromobenzene toxicity by N-acetylmethionine: correlation between toxicity and the impairment in O- and S-methylation of bromothiocatechols.
Bromobenzene (800 mg/kg, ip) caused severe liver necrosis with massive hemorrhage in the golden Syrian hamster within the first 24 hr. Kidney injury was also observed. Treatment with N-acetylmethionine (NAM) at an ip dose of 1200 mg/kg at 5 hr after bromobenzene administration significantly protected the liver and kidney against injuries. Plasma glutamate pyruvate transaminase and blood urea nitrogen levels were substantially decreased in the NAM-treated animals. Histological evaluations confirmed these results. When the urinary neutral and phenolic metabolites of bromobenzene from NAM-treated and untreated hamsters were isolated and compared by GC and GC/MS, a striking result was observed in terms of O- and S-methylated thiol-containing metabolite formation. The NAM-treated animals showed approximately a 8- to 14-fold increase in the excretion of the four isomeric O- and S-methylated bromothiocatechols. These thiocatechols, which are now known to be the 3,4-series metabolites of bromobenzene, can undergo methylation at either the thiol or the hydroxyl functional group. The excretion of 3-S- and 4-S-methylated bromodihydrobenzene thiolols was also increased significantly in the NAM-treated hamster, but other neutral and phenolic metabolites were relatively unchanged. These results suggest that bromobenzene toxicity in the Syrian hamster may be associated with impaired methylation capabilities, an impairment that could be due to methionine and glutathione depletion. Topics: Animals; Bromobenzenes; Catechols; Chemical and Drug Induced Liver Injury; Cricetinae; Kidney Diseases; Liver Diseases; Male; Mesocricetus; Methionine; Methylation; Necrosis; Species Specificity; Sulfhydryl Compounds | 1993 |