n-acetylglucosamine-1-phosphate has been researched along with glucosamine-1-phosphate* in 3 studies
3 other study(ies) available for n-acetylglucosamine-1-phosphate and glucosamine-1-phosphate
Article | Year |
---|---|
Glucose-1-phosphate uridylyltransferase from Erwinia amylovora: Activity, structure and substrate specificity.
Erwinia amylovora, a Gram-negative plant pathogen, is the causal agent of Fire Blight, a contagious necrotic disease affecting plants belonging to the Rosaceae family, including apple and pear. E. amylovora is highly virulent and capable of rapid dissemination in orchards; effective control methods are still lacking. One of its most important pathogenicity factors is the exopolysaccharide amylovoran. Amylovoran is a branched polymer made by the repetition of units mainly composed of galactose, with some residues of glucose, glucuronic acid and pyruvate. E. amylovora glucose-1-phosphate uridylyltransferase (UDP-glucose pyrophosphorylase, EC 2.7.7.9) has a key role in amylovoran biosynthesis. This enzyme catalyses the production of UDP-glucose from glucose-1-phosphate and UTP, which the epimerase GalE converts into UDP-galactose, the main building block of amylovoran. We determined EaGalU kinetic parameters and substrate specificity with a range of sugar 1-phosphates. At time point 120min the enzyme catalysed conversion of the sugar 1-phosphate into the corresponding UDP-sugar reached 74% for N-acetyl-α-d-glucosamine 1-phosphate, 28% for α-d-galactose 1-phosphate, 0% for α-d-galactosamine 1-phosphate, 100% for α-d-xylose 1-phosphate, 100% for α-d-glucosamine 1-phosphate, 70% for α-d-mannose 1-phosphate, and 0% for α-d-galacturonic acid 1-phosphate. To explain our results we obtained the crystal structure of EaGalU and augmented our study by docking the different sugar 1-phosphates into EaGalU active site, providing both reliable models for substrate binding and enzyme specificity, and a rationale that explains the different activity of EaGalU on the sugar 1-phosphates used. These data demonstrate EaGalU potential as a biocatalyst for biotechnological purposes, as an alternative to the enzyme from Escherichia coli, besides playing an important role in E. amylovora pathogenicity. Topics: Acetylglucosamine; Amino Acid Sequence; Bacterial Proteins; Crystallography, X-Ray; Erwinia amylovora; Escherichia coli; Galactosamine; Galactosephosphates; Gene Expression; Glucosamine; Glucosephosphates; Kinetics; Mannosephosphates; Models, Molecular; Molecular Docking Simulation; Pentosephosphates; Polysaccharides, Bacterial; Protein Interaction Domains and Motifs; Protein Structure, Secondary; Recombinant Proteins; Sequence Alignment; Sequence Homology, Amino Acid; Substrate Specificity; Uridine Diphosphate Glucose; Uridine Triphosphate; UTP-Glucose-1-Phosphate Uridylyltransferase | 2017 |
PknB-mediated phosphorylation of a novel substrate, N-acetylglucosamine-1-phosphate uridyltransferase, modulates its acetyltransferase activity.
Identifying direct targets of kinases and determining how their activities are regulated are central to understanding how they generate biological responses. Genetic and biochemical studies have shown that Mycobacterium tuberculosis serine/threonine protein kinases PknA and PknB play a role in modulating cell shape and possibly cell division. In this report, we show that the enzyme N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) of M. tuberculosis is a novel substrate of PknB and is phosphorylated on threonine residues. GlmU carries out two important biochemical activities: a C-terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate to produce N-acetylglucosamine-1-phosphate, which is converted into UDP-N-acetylglucosamine by the transfer of uridine 5'-monophosphate (from uridine 5'-triphosphate), a reaction catalyzed by the N-terminal domain. We determined the crystal structures of GlmU in apo form and UDP-N-acetylglucosamine-bound form, and analyzed them to identify threonine residues that may be accessible to PknB. The structure shows a two-domain architecture, with an N-terminal domain having an alpha/beta-like fold and with a C-terminal domain that forms a left-handed parallel beta-helix structure. Kinase assays with PknB using the N- and C-terminal domains of GlmU as substrates illustrated that PknB phosphorylates GlmU in the C-terminal domain. Furthermore, mutational studies reveal one of the five threonines present in region 414-439 to be phosphorylated by PknB. Structural and biochemical analyses have shown the significance of a variable C-terminal tail in regulating acetyltransferase activity. Notably, we demonstrate that although PknB-mediated phosphorylation of GlmU does not affect its uridyltransferase activity, it significantly modulates the acetyltransferase activity. These findings imply a role for PknB in regulating peptidoglycan synthesis by modulating the acetyltransferase activity of GlmU. Topics: Acetyl Coenzyme A; Acetylglucosamine; Bacterial Proteins; Crystallography, X-Ray; DNA Mutational Analysis; Glucosamine; Glucosephosphates; Models, Molecular; Multienzyme Complexes; Mycobacterium tuberculosis; Phosphorylation; Protein Folding; Protein Serine-Threonine Kinases; Protein Structure, Secondary; Protein Structure, Tertiary; Threonine; Uridine Diphosphate N-Acetylglucosamine; Uridine Triphosphate | 2009 |
Acetamido sugar biosynthesis in the Euryarchaea.
Archaea and eukaryotes share a dolichol phosphate-dependent system for protein N-glycosylation. In both domains, the acetamido sugar N-acetylglucosamine (GlcNAc) forms part of the core oligosaccharide. However, the archaeal Methanococcales produce GlcNAc using the bacterial biosynthetic pathway. Key enzymes in this pathway belong to large families of proteins with diverse functions; therefore, the archaeal enzymes could not be identified solely using comparative sequence analysis. Genes encoding acetamido sugar-biosynthetic proteins were identified in Methanococcus maripaludis using phylogenetic and gene cluster analyses. Proteins expressed in Escherichia coli were purified and assayed for the predicted activities. The MMP1680 protein encodes a universally conserved glucosamine-6-phosphate synthase. The MMP1077 phosphomutase converted alpha-D-glucosamine-6-phosphate to alpha-D-glucosamine-1-phosphate, although this protein is more closely related to archaeal pentose and glucose phosphomutases than to bacterial glucosamine phosphomutases. The thermostable MJ1101 protein catalyzed both the acetylation of glucosamine-1-phosphate and the uridylyltransferase reaction with UTP to produce UDP-GlcNAc. The MMP0705 protein catalyzed the C-2 epimerization of UDP-GlcNAc, and the MMP0706 protein used NAD(+) to oxidize UDP-N-acetylmannosamine, forming UDP-N-acetylmannosaminuronate (ManNAcA). These two proteins are similar to enzymes used for proteobacterial lipopolysaccharide biosynthesis and gram-positive bacterial capsule production, suggesting a common evolutionary origin and a widespread distribution of ManNAcA. UDP-GlcNAc and UDP-ManNAcA biosynthesis evolved early in the euryarchaeal lineage, because most of their genomes contain orthologs of the five genes characterized here. These UDP-acetamido sugars are predicted to be precursors for flagellin and S-layer protein modifications and for the biosynthesis of methanogenic coenzyme B. Topics: Acetylglucosamine; Archaeal Proteins; Biosynthetic Pathways; Carbohydrate Dehydrogenases; Carbohydrate Epimerases; Cloning, Molecular; DNA, Archaeal; Enzymes; Escherichia coli; Glucosamine; Glucose-6-Phosphate; Glucosephosphates; Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing); Methanococcus; Molecular Sequence Data; NAD; Phosphotransferases (Phosphomutases); Sequence Analysis, DNA; Uridine Diphosphate N-Acetylglucosamine; Uridine Diphosphate Sugars; Uridine Triphosphate | 2008 |