n-acetylcarnosine has been researched along with carcinine* in 7 studies
6 review(s) available for n-acetylcarnosine and carcinine
Article | Year |
---|---|
Novel neuroendocrine and metabolic mechanism provides the patented platform for important rejuvenation therapies: targeted therapy of telomere attrition and lifestyle changes of telomerase activity with the timing of neuron-specific imidazole-containing d
Telomere length is emerging as a biomarker for aging and survival is paternally inherited and associated with parental lifespan. Telomere-associated cellular senescence may contribute to certain age-related disorders, including an increase in cancer incidence, wrinkling and diminished skin elasticity, atherosclerosis, osteoporosis, weight loss, age-related cataract, glaucoma and others. Shorter telomere length in leukocytes was associated cross-sectionally with cardiovascular disorders and its risk factors, including pulse pressure and vascular aging, obesity, vascular dementia, diabetes, coronary artery disease, myocardial infarction (although not in all studies), cellular turnover and exposure to oxidative and inflammatory damage in chronic obstructive pulmonary disease. Effective regulation of abnormal therapeutic targets of an age-related disease requires the alteration of either the topological structure or dynamic characteristics of telomeres which are DNA-protein structures at the ends of eukaryotic chromosomes, the DNA of which comprise noncoding repeats of guanine-rich sequences. Telomeric DNA plays a fundamental role in protecting the cell from recombination and degradation, including those as the metabolic super-achievers in the body, organ systems in a given target network of a disease and aging. In order to manage and control the complex direct and indirect target hubs, in this paper, a review of the recent patents is made analyzing techniques, new approaches developed during the last years in adaptive pharmacology directed at slowing and preventing the loss of telomere length that may slow aging using pharmaceutical and nutritional module-based designs, such as with regard to the timing of administration of imidazole-containing dipeptides. We discuss our recent identification of the role of neuron-specific imidazole- containing dipeptide based compounds (L-carnosine, N-acetylcarnosine, carcinine) that regulate and therapeutically control telomere shortening, telomerase activity and cellular senescence. We support a therapeutic concept of using nonhydrolyzed forms of naturally occurring imidazole-dipeptide based compounds carnosine and carcinine, making it clinically possible that slowing down the rate of telomere shortening could slow down the human aging process in specific tissues where proliferative senescence is known to occur with the demonstrated evidence of telomere shortening appeared to be a hallmark of oxidative stress and disease. Topics: Aging; Carnosine; Dipeptides; Humans; Imidazoles; Life Style; Molecular Targeted Therapy; Patents as Topic; Rejuvenation; Telomere Homeostasis; Telomere Shortening | 2014 |
Novel intraocular and systemic absorption drug delivery and efficacy of N-acetylcarnosine lubricant eye drops or carcinine biologics in pharmaceutical usage and therapeutic vision care.
The latest estimates of the World Health Organization indicate that there are 161 million visually impaired individuals worldwide, 37 million of whom are blind, with a yearly increase of 1-2 million. The scientists developed and patented the lubricant eye drops formulated as 1%N-acetylcarnosine prodrug of l-carnosine containing a mucoadhesive cellulose-based compound combined with corneal absorption promoters in an ocular drug delivery system. Carcinine is suitable for the systemic administration (per oral) for ophthalmic therapeutic indications. The HPLC analysis was developed to search the pathways of ocular metabolic activities of 1%N-acetylcarnosine and the bioactivation of this drug molecule promoting transcorneal uptake of l-carnosine in the aqueous humor. A meta-analysis of phase 2 randomized double-blind placebo-controlled clinical trial data was conducted. The intraocular absorbed l-carnosine demonstrated a number of pharmacological mechanisms of prevention and reversal of cataracts. Results of systemic absorption of l-carnosine provide tuberomammillary activation that regulates neuronal functions such as hypothalamic control promoting sensory input in the primary vision perceptual pathway. The parabulbar, subconjunctival, and intravitreal injection of carcinine with most of the vehicle removed is not toxic to intraocular structures, reduces postoperative intraocular inflammation, is a potentially useful tool in the treatment of proliferative vitreoretinopathy as well as considered as the antiapoptotic drug for the protection of photoreceptor cells from oxidative light-induced stress. The discovery of naturally occurring carnosine derivatives introduces N-acetylcarnosine and carcinine as effective medical treatment for sight-threatening eye disorders. Topics: Administration, Ophthalmic; Animals; Carnosine; Cataract; Chromatography, High Pressure Liquid; Clinical Trials, Phase II as Topic; Drug Delivery Systems; Eye Diseases; Humans; Prodrugs; Randomized Controlled Trials as Topic; Vitreoretinopathy, Proliferative | 2012 |
Structural and functional properties, chaperone activity and posttranslational modifications of alpha-crystallin and its related subunits in the crystalline lens: N-acetylcarnosine, carnosine and carcinine act as alpha- crystallin/small heat shock protein
Cataract is a leading cause of blindness worldwide and is responsible for ∼40-80% of the estimated 45 million cases of blindness that occur across the globe. In addition to providing refractive properties to the lens for focusing the image, it is believed that the molecular chaperone function of α-crystallin is essential in preventing the light scattering due to aggregation of other proteins and thus in the maintenance of lens transparency and thereby prevention of cataract. By now, it is fairly acknowledged that chaperoning ability of α-crystallin is instrumental in the maintenance of crystalline lens transparency, and decreased chaperone-like activity of α-crystallin is associated with various types and stages of cataract. A better pharmacological targeting of safeguarding the α-crystallin chaperone activity may aid the development of therapeutic strategies that could evade the need for cataract surgery and revive lens transparency of the cataractous lenses. This article originally summarizes the significance of modulation and enhancing of α-crystallin chaperone activity with imidazole-containing dipeptides N-acetylcarnosine, carnosine and carcinine in consequence to prevent, delay or dissolve the human cataract. A growing evidence and discussion of recent patents are presented in this study that demonstrate the ability of N-acetylcarnosine (lubricant eye drops) or carcinine (lubricant eye drops) (universal antioxidant and deglycation agent) resistant to enzymatic hydrolysis with carnosinase to act as pharmacological chaperones, to decrease oxidative stress and ameliorate oxidative and excessive glycation stress-related eye disease phenotypes, suggesting that the field of chaperone therapy might hold novel treatments for age-related cataracts, age-related macular degeneration (AMD) and ocular complications of diabetes (OCD). The therapeutic strategies are highlighted in the study for identifying potential chaperone compounds and for experimentally demonstrating chaperone activity in in vitro and in vivo models of human age-related eye disease, such as cataracts and advanced glycation tissue proteins - engineered systems. Topics: Age Factors; alpha-Crystallins; Animals; Carnosine; Cataract; Drug Design; Humans; Lens, Crystalline; Molecular Chaperones; Oxidative Stress; Patents as Topic | 2012 |
Designation of imidazole-containing dipeptides as pharmacological chaperones.
We review the dichotomous regulatory roles of natural imidazole-containing peptidomimetics (N-acetylcarnosine [NAC], carcinine, non-hydrolized carnosine) in maintaining skin homeostasis that determines whether keratinocytes survive or undergo apoptosis in response to various insults and in the development of skin diseases. General strategies addressing common ground techniques to improve absorption of usually active chaperone proteins or their dipeptide inducer (usually poorly absorbed) compounds include encapsulation into hydrophobic carriers, combination with penetration enhancers, active electrical transport or chemical modification to increase hydrophobicity. A growing evidence is presented that demonstrates the ability of NAC (lubricant eye drops) or carcinine to act as pharmacological chaperones, or being synergistically coupled in patented formulations with another imidazole-containing peptidomimetic (such as, Leucyl-histidylhydrazide), to decrease oxidative stress and ameliorate oxidative and excessive glycation stress-related eye disease phenotypes, suggesting that the field of chaperone therapy might hold novel treatments for age-related cataracts, glaucoma, age-related macular degeneration (AMD), and ocular complications of diabetes (OCD). Current efforts are being directed towards exploring therapeutic approaches of pharmacological targeting and human drug delivery for chaperone molecules based on innovative patented strategies. Topics: Carnosine; Cataract; Drug Carriers; Humans; Imidazoles; Lipid Peroxidation; Macular Degeneration; Molecular Chaperones; Oxidative Stress | 2011 |
Therapeutic uses of drug-carrier systems for imidazole-containing dipeptide compounds that act as pharmacological chaperones and have significant impact on the treatment of chronic diseases associated with increased oxidative stress and the formation of a
The purpose of this study was to determine how the naturally occurring molecules N-acetylcarnosine, L-carnosine, and carcinine, which are chemical or pharmacological chaperones, affect the cells and biomolecules of patients with skin diseases, cosmetic skin lesions, or underlying clinically significant visual impairment such as age-related cataracts, age-related retinal degeneration, and ocular complications of diabetes. We evaluated and characterized the effects of cited pharmacological chaperones on enzyme activity, protein structure in tissues, and other biomarkers of diseases in skin cells and tissues or in ocular tissues (human cataractous and normal lenses) derived from ophthalmic patients or age-matched donors. The samples were used to test imidazole-containing peptidomimetic chemical/pharmacological chaperones in relation to oxidative stress induced by reaction with lipid peroxides or advanced non-enzymatic glycation processes. Chaperone function is characterized by interaction with other proteins, mediating their folding, transport, and interaction with other molecules, lipid peroxidation products, and membranes. Although these therapies remain on hold pending further investigation, we present growing evidence demonstrating the ability of N-acetylcarnosine (lubricant eye drops) or carcinine pharmacological chaperone therapy to act as novel treatments for age-related cataracts, age-related macular degeneration, and ocular complications of diabetes. Finally, we examine strategies for identifying potential chaperone compounds and for experimentally demonstrating chaperone and transglycating (de-glycation) types of activity in in vitro and in vivo models of human age-related eye diseases, such as cataracts, and advanced glycation tissue protein-engineered systems. Topics: Aging; Animals; Biomarkers; Carnosine; Chemistry, Pharmaceutical; Chronic Disease; Drug Carriers; Drug Compounding; Drug Design; Eye Diseases; Glycation End Products, Advanced; Humans; Lens, Crystalline; Lipid Peroxidation; Models, Molecular; Molecular Structure; Oxidative Stress; Skin; Skin Aging; Skin Diseases; Structure-Activity Relationship | 2010 |
Advanced drug delivery of N-acetylcarnosine (N-acetyl-beta-alanyl-L-histidine), carcinine (beta-alanylhistamine) and L-carnosine (beta-alanyl-L-histidine) in targeting peptide compounds as pharmacological chaperones for use in tissue engineering, human di
A pharmacological chaperone is a relatively new concept in the treatment of certain chronic disabling diseases. Cells maintain a complete set of functionally competent proteins normally and in the face of injury or environmental stress with the use of various mechanisms, including systems of proteins called molecular chaperones. Proteins that are denatured by any form of proteotoxic stress are cooperatively recognized by heat shock proteins (HSP) and directed for refolding or degradation. Under non-denaturing conditions HSP have important functions in cell physiology such as in transmembrane protein transport and in enabling assembly and folding of newly synthesized polypeptides. Besides cellular molecular chaperones, which are stress-induced proteins, there have been recently reported chemical, or so-called pharmacological chaperones with demonstrated ability to be effective in preventing misfolding of different disease causing proteins, specifically in the therapeutic management of sight-threatening eye diseases, essentially reducing the severity of several neurodegenerative disorders (such as age-related macular degeneration), cataract and many other protein-misfolding diseases. This work reviews the biological and therapeutic activities protected with the patents of the family of imidazole-containing peptidomimetics Carcinine (β-alanylhistamine), N-acetylcarnosine (N-acetyl-β-alanylhistidine) and Carnosine (β-alanyl-L-histidine) which are essential constituents possessing diverse biological and pharmacological chaperone properties in human tissues. Topics: Animals; Carnosine; Drug Delivery Systems; Heat-Shock Proteins; Humans; Molecular Chaperones; Patents as Topic; Protein Folding; Tissue Engineering | 2010 |
1 other study(ies) available for n-acetylcarnosine and carcinine
Article | Year |
---|---|
Biological activities of the natural imidazole-containing peptidomimetics n-acetylcarnosine, carcinine and L-carnosine in ophthalmic and skin care products.
Apart from genetically programmed cell aging, different external aggressors related to oxidative stress and lipid peroxidation (LPO) can accelerate the skin aging phenomenon. Oxidative stress associated with the formation of lipid peroxides is suggested to contribute to pathological processes in aging and systemic diseases known as the risk factors for cataract. Despite the fact that L-carnosine-related peptidomimetics N-acetylcarnosine (N-acetyl-beta-alanyl-L-histidine) (NAC) and carcinine (beta-alanylhistamine) are metabolically related to L-carnosine and have been demonstrated to occur in tissues of many vertebrates, including humans, these compounds were shown resistant toward enzymatic hydrolysis. A series of related biocompatible imidazole-containing peptidomimetics were synthesized in order to confer resistance to enzymatic hydrolysis and ex vivo improvement of protective antioxidative properties related to L-carnosine. The included findings revealed a greater role of N-acetylcarnosine (NAC) and carcinine ex vivo in the prolongation and potentiation of physiological responses to the therapeutical and cosmetics treatments with L-carnosine as antioxidant. 3-D molecular conformation studies proposed the antioxidant activity of peptidomimetics (carcinine, L-prolylhistamine, N-acetylcarnosine, L-carnosine) for metal ion binding, quenching of a number free radicals, and binding of hydroperoxide or aldehyde (including dialdehyde LPO products) in an imidazole-peroxide adducts. NAC can act as a time release (carrier) stable version of L-carnosine during application in ophthalmic pharmaceutical and cosmetics formulations which include lubricants. Carcinine, L-prolylhistamine show efficient deactivation of lipid hydroperoxides monitored by HPLC and protection of membrane phospholipids and water soluble proteins from the lipid peroxides-induced damages. This activity is superior over the lipophilic antioxidant vitamin E. The biologically significant applications of carnosine mimetics were patented by Dr. Babizhayev and the alliance Groups (WO 2004/028536 A1; WO 94/19325; WO 95/12581; WO 2004/064866 A1). Topics: Aldehydes; Animals; Aqueous Humor; Carnosine; Chinchilla; Chromatography, High Pressure Liquid; Electrophoresis, Polyacrylamide Gel; Imidazoles; Lipid Peroxidation; Male; Microsomes; Models, Molecular; Ophthalmic Solutions; Peroxides; Phospholipids; Rabbits; Skin Aging; Skin Care; Superoxide Dismutase; Ultraviolet Rays | 2006 |