n-(n-(3-carboxyoxirane-2-carbonyl)leucyl)isoamylamine has been researched along with honokiol in 5 studies
Studies (n-(n-(3-carboxyoxirane-2-carbonyl)leucyl)isoamylamine) | Trials (n-(n-(3-carboxyoxirane-2-carbonyl)leucyl)isoamylamine) | Recent Studies (post-2010) (n-(n-(3-carboxyoxirane-2-carbonyl)leucyl)isoamylamine) | Studies (honokiol) | Trials (honokiol) | Recent Studies (post-2010) (honokiol) |
---|---|---|---|---|---|
79 | 1 | 16 | 816 | 1 | 586 |
Protein | Taxonomy | n-(n-(3-carboxyoxirane-2-carbonyl)leucyl)isoamylamine (IC50) | honokiol (IC50) |
---|---|---|---|
Neuraminidase | Influenza A virus (A/Wilson-Smith/1933(H1N1)) | 1.39 | |
TPA: protein transporter TIM10 | Saccharomyces cerevisiae S288C | 48.8 | |
high affinity choline transporter 1 isoform a | Homo sapiens (human) | 12.0226 | |
Polyunsaturated fatty acid 5-lipoxygenase | Homo sapiens (human) | 4.2 | |
Prostaglandin G/H synthase 2 | Ovis aries (sheep) | 2.1 |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 2 (40.00) | 2.80 |
Authors | Studies |
---|---|
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Jadhav, A; Kerns, E; Nguyen, K; Shah, P; Sun, H; Xu, X; Yan, Z; Yu, KR | 1 |
Kabir, M; Kerns, E; Nguyen, K; Shah, P; Sun, H; Wang, Y; Xu, X; Yu, KR | 1 |
Kabir, M; Kerns, E; Neyra, J; Nguyen, K; Nguyễn, ÐT; Shah, P; Siramshetty, VB; Southall, N; Williams, J; Xu, X; Yu, KR | 1 |
Dranchak, PK; Huang, R; Inglese, J; Lamy, L; Oliphant, E; Queme, B; Tao, D; Wang, Y; Xia, M | 1 |
5 other study(ies) available for n-(n-(3-carboxyoxirane-2-carbonyl)leucyl)isoamylamine and honokiol
Article | Year |
---|---|
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |
Highly predictive and interpretable models for PAMPA permeability.
Topics: Artificial Intelligence; Caco-2 Cells; Cell Membrane Permeability; Humans; Models, Biological; Organic Chemicals; Regression Analysis; Support Vector Machine | 2017 |
Predictive models of aqueous solubility of organic compounds built on A large dataset of high integrity.
Topics: Drug Discovery; Organic Chemicals; Pharmaceutical Preparations; Solubility | 2019 |
Retrospective assessment of rat liver microsomal stability at NCATS: data and QSAR models.
Topics: Animals; Computer Simulation; Databases, Factual; Drug Discovery; High-Throughput Screening Assays; Liver; Machine Learning; Male; Microsomes, Liver; National Center for Advancing Translational Sciences (U.S.); Pharmaceutical Preparations; Quantitative Structure-Activity Relationship; Rats; Rats, Sprague-Dawley; Retrospective Studies; United States | 2020 |
In vivo quantitative high-throughput screening for drug discovery and comparative toxicology.
Topics: Animals; Caenorhabditis elegans; Drug Discovery; High-Throughput Screening Assays; Humans; Proteomics; Small Molecule Libraries | 2023 |