n-(4-methoxyphenyl)retinamide and 4-oxofenretinide

n-(4-methoxyphenyl)retinamide has been researched along with 4-oxofenretinide* in 2 studies

*4-oxofenretinide: an antineoplastic agent; structure in first source [MeSH]

*4-oxofenretinide: an antineoplastic agent; structure in first source [MeSH]

Other Studies

2 other study(ies) available for n-(4-methoxyphenyl)retinamide and 4-oxofenretinide

ArticleYear
Inhibitory effects of fenretinide metabolites N-[4-methoxyphenyl]retinamide (MPR) and 4-oxo-N-(4-hydroxyphenyl)retinamide (3-keto-HPR) on fenretinide molecular targets β-carotene oxygenase 1, stearoyl-CoA desaturase 1 and dihydroceramide Δ4-desaturase 1.
    PloS one, 2017, Volume: 12, Issue:4

    The therapeutic capacity of fenretinide (N-[4-hydroxyphenyl] retinamide; 4-HPR) has been demonstrated for several conditions, including cancer, obesity, diabetes, and ocular disease. Yet, the mechanisms of action for its pleiotropic effects are still undefined. We hypothesized that investigation of two of the major physiological metabolites of fenretinide, N-[4-methoxyphenyl]retinamide (MPR) and 4-oxo-N-(4-hydroxyphenyl)retinamide (3-keto-HPR), might begin to resolve the multifaceted effects of this synthetic retinoid. We analyzed the effects of fenretinide, MPR, 3-keto-HPR, and the non-retinoid RBP4 ligand A1120, on the activity of known targets of fenretinide, stearoyl-CoA desaturase 1 (SCD1) and dihydroceramide Δ4-desaturase 1 (DES1) in ARPE-19 cells, and purified recombinant mouse beta-carotene oxygenase 1 (BCO1) in vitro. Lipids and retinoids were extracted and quantified by liquid chromatography-mass spectrometry and reversed phase HPLC, respectively. The data demonstrate that while fenretinide is an inhibitor of the activities of these three enzymes, that 3-keto-HPR is a more potent inhibitor of all three enzymes, potentially mediating most of the in vivo beneficial effects of fenretinide. However, while MPR does not affect SCD1 and DES1 activity, it is a potent specific inhibitor of BCO1. We conclude that a deeper understanding of the mechanisms of action of fenretinide and its metabolites provides new avenues for therapeutic specificity. For example, administration of 3-keto-HPR instead of fenretinide may be preferential if inhibition of SCD1 or DES1 activity is the goal (cancer), while MPR may be better for BCO1 modulation (carotenoid metabolism). Continued investigation of fenretinide metabolites in the context of fenretinide's various therapeutic uses will begin to resolve the pleotropic nature of this compound.

    Topics: Animals; beta-Carotene 15,15'-Monooxygenase; Cell Line; Fenretinide; Humans; Membrane Proteins; Mice; Molecular Targeted Therapy; Oxidoreductases; Receptors, Retinoic Acid; Stearoyl-CoA Desaturase; Tretinoin

2017
Characterization of the metabolism of fenretinide by human liver microsomes, cytochrome P450 enzymes and UDP-glucuronosyltransferases.
    British journal of pharmacology, 2011, Volume: 162, Issue:4

    Fenretinide (4-HPR) is a retinoic acid analogue, currently used in clinical trials in oncology. Metabolism of 4-HPR is of particular interest due to production of the active metabolite 4'-oxo 4-HPR and the clinical challenge of obtaining consistent 4-HPR plasma concentrations in patients. Here, we assessed the enzymes involved in various 4-HPR metabolic pathways.. Enzymes involved in 4-HPR metabolism were characterized using human liver microsomes (HLM), supersomes over-expressing individual human cytochrome P450s (CYPs), uridine 5'-diphospho-glucoronosyl transferases (UGTs) and CYP2C8 variants expressed in Escherichia coli. Samples were analysed by high-performance liquid chromatography and liquid chromatography/mass spectrometry assays and kinetic parameters for metabolite formation determined. Incubations were also carried out with inhibitors of CYPs and methylation enzymes.. HLM were found to predominantly produce 4'-oxo 4-HPR, with an additional polar metabolite, 4'-hydroxy 4-HPR (4'-OH 4-HPR), produced by individual CYPs. CYPs 2C8, 3A4 and 3A5 were found to metabolize 4-HPR, with metabolite formation prevented by inhibitors of CYP3A4 and CYP2C8. Differences in metabolism to 4'-OH 4-HPR were observed with 2C8 variants, CYP2C8*4 exhibited a significantly lower V(max) value compared with *1. Conversely, a significantly higher V(max) value for CYP2C8*4 versus *1 was observed in terms of 4'-oxo formation. In terms of 4-HPR glucuronidation, UGTs 1A1, 1A3 and 1A6 produced the 4-HPR glucuronide metabolite.. The enzymes involved in 4-HPR metabolism have been characterized. The CYP2C8 isoform was found to have a significant effect on oxidative metabolism and may be of clinical relevance.

    Topics: Aryl Hydrocarbon Hydroxylases; Cytochrome P-450 CYP2C8; Cytochrome P-450 CYP3A; Cytochrome P-450 CYP3A Inhibitors; Cytochrome P-450 Enzyme System; Enzyme Inhibitors; Fenretinide; Glucuronides; Glucuronosyltransferase; Humans; Intestinal Mucosa; Intestines; Kinetics; Microsomes; Microsomes, Liver; Mutant Proteins; Recombinant Proteins; Tretinoin

2011