n-(2-3-dihydroxypropyl)valine and glycidol

n-(2-3-dihydroxypropyl)valine has been researched along with glycidol* in 7 studies

Other Studies

7 other study(ies) available for n-(2-3-dihydroxypropyl)valine and glycidol

ArticleYear
Levels of the hemoglobin adduct N-(2,3-Dihydroxypropyl)-valine in cord and maternal blood: Prenatal transfer of glycidol in the ENVIRONAGE birth cohort.
    Toxicology letters, 2020, Oct-10, Volume: 332

    Glycidol, a probable human carcinogen, is a reactive chemical released in the gastrointestinal tract from glycidyl fatty acid esters, which are heat-induced dietary contaminants.. To investigate the prenatal transfer of glycidol, a specific hemoglobin adduct was measured as a biomarker for internal glycidol exposure in paired cord and maternal blood samples.. In 100 mother-newborn pairs from the Belgian ENVIRONAGE (ENVIRonmental influence ON AGEing in early life) birth cohort, we studied the correlation between levels of the glycidol-derived hemoglobin adduct N-(2,3-dihydroxypropyl)-valine (2,3-diHOPr-Val) in paired cord and maternal blood samples. The adduct levels were determined after cleavage with a modified Edman degradation by using ultra-high performance liquid chromatography-tandem mass spectrometry and an isotope-labeled reference standard.. 2,3-DiHOPr-Val was detectable in all 100 maternal blood samples and in 96 cord blood samples (LOD =0.5 pmol 2,3-diHOPr-Val/g hemoglobin), with medians of 5.4 (range: 2.3-29.2) and 1.6 (range: LOD - 8.9) pmol/g hemoglobin), respectively. In blood samples of mothers who smoked during pregnancy and in the cord blood samples of their newborns (n = 6), the median 2,3-diHOPr-Val levels were 16.7 (range: 6.4-29.2) and 6.2 (range: LOD - 8.6) pmol/g hemoglobin, respectively. The median ratio of 2,3-diHOPr-Val levels of cord to maternal blood was 0.35 (range: 0.19-1.14) (n = 49). The Spearman correlation coefficient between 2,3-diHOPr-Val levels in cord and maternal blood samples was 0.63 (p < 0.001) among all mother-newborn pairs and 0.59 (p < 0.001) among mother-newborn pairs of non-smoking mothers.. Maternal data confirm widespread exposure to glycidol, also in non-smokers. Neonatal levels indicate prenatal exposure to glycidol, due to an obviously relatively unhindered passive transfer through the placental barrier. Possible health effects of fetal (and postnatal) glycidol exposure in children may be addressed in epidemiological studies.

    Topics: Adult; Biomarkers; Chromatography, High Pressure Liquid; Cohort Studies; Epoxy Compounds; Erythrocytes; Female; Fetal Blood; Hemoglobins; Humans; Infant, Newborn; Maternal-Fetal Exchange; Pregnancy; Propanols; Smoking; Tandem Mass Spectrometry; Valine

2020
The hemoglobin adduct N-(2,3-dihydroxypropyl)-valine as biomarker of dietary exposure to glycidyl esters: a controlled exposure study in humans.
    Archives of toxicology, 2019, Volume: 93, Issue:2

    Fatty acid esters of glycidol (glycidyl esters) are heat-induced food contaminants predominantly formed during industrial deodorization of vegetable oils and fats. After consumption, the esters are digested in the gastrointestinal tract, leading to a systemic exposure to the reactive epoxide glycidol. The compound is carcinogenic, genotoxic and teratogenic in rodents, and rated as probably carcinogenic to humans (IARC group 2A). Assessment of exposure from occurrence and consumption data is difficult, as lots of different foods containing refined oils and fats may contribute to human exposure. Therefore, assessment of the internal exposure using the hemoglobin adduct of glycidol, N-(2,3-dihydroxypropyl)-valine (2,3-diHOPr-Val), may be promising, but a proof-of-principle study is needed to interpret adduct levels with respect to the underlying external exposure. A controlled exposure study was conducted with 11 healthy participants consuming a daily portion of about 36 g commercially available palm fat with a relatively high content of ester-bound glycidol (8.7 mg glycidol/kg) over 4 weeks (total amount 1 kg fat, individual doses between 2.7 and 5.2 µg/kg body weight per day). Frequent blood sampling was performed to monitor the 2,3-diHOPr-Val adduct levels during formation and the following removal over 15 weeks, using a modified Edman degradation and ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Results demonstrated for the first time that the relatively high exposure during the intervention period was reflected in corresponding distinct increases of 2,3-diHOPr-Val levels in all participants, following the expected slope for hemoglobin adduct formation and removal over time. The mean adduct level increased from 4.0 to 12.2 pmol 2,3-diHOPr-Val/g hemoglobin. By using a nonlinear mixed model, values for the adduct level/dose ratio (k, mean 0.082 pmol 2,3-diHOPr-Val/g hemoglobin per µg glycidol/kg body weight) and the adduct lifetime (τ, mean 104 days, likely the lifetime of the erythrocytes) were determined. Interindividual variability was generally low. 2,3-DiHOPr-Val was therefore proven to be a biomarker of the external dietary exposure to fatty acid esters of glycidol. From the background adduct levels observed in our study, a mean external glycidol exposure of 0.94 µg/kg body weight was estimated. This value is considerably higher than current estimates for adults using occurrence and consumption data of food. Poss

    Topics: Adult; Biomarkers; Chromatography, High Pressure Liquid; Dietary Exposure; Epoxy Compounds; Erythrocytes; Female; Fluorescein-5-isothiocyanate; Hemoglobins; Humans; Male; Middle Aged; Palm Oil; Propanols; Solid Phase Extraction; Tandem Mass Spectrometry; Valine

2019
Characterization of glycidol-hemoglobin adducts as biomarkers of exposure and in vivo dose.
    Toxicology and applied pharmacology, 2014, Mar-15, Volume: 275, Issue:3

    Hemoglobin adducts have been used as biomarkers of exposure to reactive chemicals. Glycidol, an animal carcinogen, has been reported to form N-(2,3-dihydroxy-propyl)valine adducts to hemoglobin (diHOPrVal). To support the use of these adducts as markers of glycidol exposure, we investigated the kinetics of diHOPrVal formation and its elimination in vitro and in vivo. Five groups of rats were orally administered a single dose of glycidol ranging from 0 to 75mg/kg bw, and diHOPrVal levels were measured 24h after administration. A dose-dependent increase in diHOPrVal levels was observed with high linearity (R(2)=0.943). Blood sampling at different time points (1, 10, 20, or 40days) from four groups administered glycidol at 12mg/kg bw suggested a linear decrease in diHOPrVal levels compatible with the normal turnover of rat erythrocytes (life span, 61days), with the calculated first-order elimination rate constant (kel) indicating that the diHOPrVal adduct was chemically stable. Then, we measured the second-order rate constant (kval) for the reaction of glycidol with N-terminal valine in rat and human hemoglobin in in vitro experiments with whole blood. The kval was 6.7±1.1 and 5.6±1.3 (pmol/g globin per μMh) in rat and human blood, respectively, indicating no species differences. In vivo doses estimated from kval and diHOPrVal levels were in agreement with the area under the (concentration-time) curve values determined in our earlier toxicokinetic study in rats. Our results indicate that diHOPrVal is a useful biomarker for quantification of glycidol exposure and for risk assessment.

    Topics: Administration, Oral; Animals; Biomarkers; Carcinogens; Dose-Response Relationship, Drug; Epoxy Compounds; Erythrocytes; Hemoglobins; Humans; Linear Models; Male; Metabolic Clearance Rate; Models, Biological; Propanols; Rats; Rats, Sprague-Dawley; Risk Assessment; Valine

2014
Relative oral bioavailability of glycidol from glycidyl fatty acid esters in rats.
    Archives of toxicology, 2013, Volume: 87, Issue:9

    In order to quantify the relative bioavailability of glycidol from glycidyl fatty acid esters in vivo, glycidyl palmitoyl ester and glycidol were orally applied to rats in equimolar doses. The time courses of the amounts of glycidol binding to hemoglobin as well as the excretion of 2,3-dihydroxypropyl mercapturic acids were determined. The results indicate that glycidol is released from the glycidyl ester by hydrolysis and rapidly distributed in the organism. In relation to glycidol, there was only a small timely delay in the binding to hemoglobin for the glycidol moiety released from the ester which may be certainly attributed to enzymatic hydrolysis. In both cases, however, an analogous plateau was observed representing similar amounts of hemoglobin binding. With regard to the urinary excretion of mercapturic acids, also similar amounts of dihydroxypropyl mercapturic acids could be detected. In an ADME test using a virtual double tag (³H, ¹⁴C) of glycidyl palmitoyl ester, a diverging isotope distribution was detected. The kinetics of the ¹⁴C-activity reflected the kinetics of free glycidol released after hydrolysis of the palmitoyl ester. In view of this experimental data obtained in rats, it is at present justified for the purpose of risk assessment to assume complete hydrolysis of the glycidyl ester in the gastrointestinal tract. Therefore, assessment of human exposure to glycidyl fatty acid ester should be regarded as an exposure to the same molar quantity of glycidol.

    Topics: Acetylcysteine; Administration, Oral; Animals; Biological Availability; Biomarkers; Biotransformation; Carbon Radioisotopes; Epoxy Compounds; Food Contamination; Hemoglobins; Hydrolysis; Male; Palmitates; Palmitic Acids; Propanols; Rats; Rats, Wistar; Tissue Distribution; Tritium; Valine

2013
Glycidol exposure evaluation of humans who have ingested diacylglycerol oil containing glycidol fatty acid esters using hemoglobin adducts.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2012, Volume: 50, Issue:11

    Glycidol fatty acid esters (GEs) have been found as impurities in refined edible oils including diacylglycerol (DAG) oil, and concerns of possible exposure to glycidol (G), a known animal carcinogen, during digestion have been raised. We previously measured N-(2,3-dihydroxy-propyl)valine (diHOPrVal), a G hemoglobin adduct, for DAG oil exposed and non-exposed groups and showed there was no significant difference between them. In the present study, we conducted an additional analysis to verify the outcome of the previous report. The first experiment was designed as a matched case-control study to adjust variables with an increased sample size. The average levels of diHOPrVal were 6.9 pmol/g-globin (95%CI: 4.9-9.0) for 14 DAG oil exposed subjects and 7.3 pmol/g-globin (95%CI: 6.1-8.5) for 42 non-exposed volunteers, and no significant difference in levels was found between the two groups. In a second experiment, we compared the adduct levels of 12 DAG oil exposed subjects before and after discontinuing use of DAG oil, and found there was no significant change in diHOPrVal levels (from 7.1±1.1 to 7.5±1.4 pmol/g-globin). These results suggest that there was no increased exposure to G for humans who ingested DAG oil daily, although the evaluated population was limited.

    Topics: Adult; Carcinogens; Case-Control Studies; Diglycerides; Epoxy Compounds; Hemoglobins; Humans; Male; Middle Aged; Propanols; Valine

2012
Measurement of glycidol hemoglobin adducts in humans who ingest edible oil containing small amounts of glycidol fatty acid esters.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2011, Volume: 49, Issue:10

    Hemoglobin (Hb) adducts are frequently used to address and/or monitor exposure to reactive chemicals. Glycidol (G), a known animal carcinogen, has been reported to form Hb adducts. Here, we measure G adduct levels in humans who daily ingest DAG oil, an edible oil consisting mainly of diacylglycerol. Since DAG oil contains a small amount of glycidol fatty acid esters (GEs), possible exposure to G released from GEs has been raised as a possible concern. For measurement of Hb adducts, we employed the N-alkyl Edman method reported by Landin et al. (1996) using gas chromatography-tandem mass spectrometry with minor modifications to detect G-Hb adducts as N-(2,3-dihydroxy-propyl)valine (diHOPrVal). Blood samples were collected from 7 DAG oil users and 6 non-users, and then G-Hb adduct levels were measured. G-Hb adducts were detected in all samples. The average level of diHOPrVal was 3.5±1.9pmol/g globin in the DAG oil users and 7.1±3.1pmol/g globin in the non-users. We conclude that there is no increased exposure to G in individuals who daily ingest DAG oil.

    Topics: Adult; Dietary Fats, Unsaturated; Epoxy Compounds; Female; Gas Chromatography-Mass Spectrometry; Hemoglobins; Humans; Male; Middle Aged; Propanols; Tandem Mass Spectrometry; Valine

2011
Heating of food and haemoglobin adducts from carcinogens: possible precursor role of glycidol.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2000, Volume: 38, Issue:11

    Studies of adducts from reactive compounds to haemoglobin (Hb) by gas chromatography-tandem mass spectrometry according to the N-alkyl Edman method reveals the occurrence of N-(2,3-dihydroxypropyl)valine (diHOPrVal) at levels of 1-2 pmol/g Hb, in persons without known exposure. The hypothesis that this background originates from glycidol or related compounds during heating of food was tested in experiments with rats. Animals fed fried animal feed for 30 or 72 days showed an increase of the diHOPrVal level by about 50% compared with controls. Several arguments, such as the formation of reactive oxiranes by heat-induced dehydration of glycol configurations in glycerol and sugars, support the idea that glycidol (or e.g. glycidyl esters) are precursors of the adduct. In Hb samples, reduced for stabilisation of aldehyde adducts, relatively high levels of adducts determined as diHOPrVal were found, although without significant relation to frying of the feed. There is thus no indication that reduction in vivo of, for example, the Schiff base from glyceraldehyde, is a pathway for formation of the diHOPrVal. The background level of diHOPrVal in humans Hb is low, and the cancer risk associated with exposure to the specific alkylator-probably glycidol-formed in cooking, is therefore presumably low. The result implies, however, that low-molecular mass mutagenic oxiranes formed during the heating of food should be studied further.

    Topics: Animals; Carcinogens; Cooking; Diet; Epoxy Compounds; Erythrocytes; Female; Gas Chromatography-Mass Spectrometry; Hemoglobins; Hot Temperature; Male; Propanols; Rats; Rats, Sprague-Dawley; Valine

2000