n(6)-cyclopentyladenosine and iberiotoxin

n(6)-cyclopentyladenosine has been researched along with iberiotoxin* in 2 studies

Other Studies

2 other study(ies) available for n(6)-cyclopentyladenosine and iberiotoxin

ArticleYear
Functional and molecular characterization of receptor subtypes mediating coronary microvascular dilation to adenosine.
    Journal of molecular and cellular cardiology, 2001, Volume: 33, Issue:2

    Adenosine is a potent vasodilator of the coronary microvessels and is implicated in the regulation of coronary blood flow during metabolic stress. However, the receptor subtypes and the vasodilatory mechanism responsible for the dilation of coronary microvessels to adenosine remain unclear. In the present study, using an isolated-vessel preparation we demonstrated that porcine coronary arterioles (50-100 microm) dilated concentration-dependently to adenosine, CPA (adenosine A1 receptor agonist) and CGS21680 (adenosine A2A receptor agonist). These vasodilations were not altered by the A1 receptor antagonist CPX, but were abolished by the selective A2A receptor antagonist ZM241385, indicating that activation of A2A receptors mediates these vasodilatory responses. The protein kinase A inhibitor Rp-8-Br-cAMPS abolished coronary arteriolar dilations to adenylyl cyclase activator forskolin and cAMP analog 8-Br-cAMP, but failed to inhibit adenosine- and CGS21680-induced dilations. The calcium-activated potassium channel inhibitor iberiotoxin also did not affect vasodilations to adenosine and CGS21680. In contrast, the ATP-sensitive potassium (K(ATP)) channel inhibitor glibenclamide abolished vasodilations to adenosine and CGS21680 but did not affect vasodilations to forskolin and 8-Br-cAMP. In addition, the cAMP level in coronary microvessels was not increased by adenosine or CGS21680. The results from RT/PCR and in situ hybridization indicated that adenosine A2A receptor mRNA was encoded in coronary arterioles and the left anterior descending (LAD) artery but not in cardiomyocytes, whereas the A1 receptor transcript was detected in the LAD artery and cardiomyocytes but not in arterioles. Similarly, adenosine A1 and A2A proteins were expressed in the LAD artery, but only A2A receptors were expressed in coronary arterioles. Collectively, these functional data suggest that coronary arteriolar dilation to adenosine is primarily mediated by the opening of K(ATP) channels through activation of A2A receptors. This conclusion is corroborated by the molecular data showing that coronary arterioles only express adenosine A2A receptors. Furthermore, the dilation of coronary microvessels to adenosine A2A receptor activation appears to be independent of cAMP signaling.

    Topics: 8-Bromo Cyclic Adenosine Monophosphate; Adenosine; Animals; Antihypertensive Agents; Blotting, Western; Colforsin; Coronary Vessels; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Dose-Response Relationship, Drug; Enzyme Inhibitors; Enzyme-Linked Immunosorbent Assay; Female; Glyburide; Heart; Hypoglycemic Agents; In Situ Hybridization; Male; Microcirculation; Myocardium; Peptides; Phenethylamines; Potassium Channel Blockers; Purinergic P1 Receptor Antagonists; Receptors, Purinergic P1; Reverse Transcriptase Polymerase Chain Reaction; Stress, Physiological; Swine; Thionucleotides; Tissue Distribution; Triazines; Triazoles

2001
Smooth muscle relaxant activity of A1- and A2-selective adenosine receptor agonists in guinea pig trachea: involvement of potassium channels.
    Fundamental & clinical pharmacology, 1996, Volume: 10, Issue:3

    The relaxant activities of N6-cyclopentyladenosine (CPA), an A1-selective agonist, and of 5'-(N-cyclopropyl)-carboxamidoadenosine (CPCA), a potent A2-receptor agonist, in the carbachol-contracted guinea pig isolated trachea have been evaluated. Both CPA and CPCA induced concentration-dependent relaxations of the guinea pig trachea, CPCA demonstrating a more potent but less efficient activity. 8-Cyclopentyl-1,3-dimethylxanthine (CPT) and 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) (10 microM), both selective and potent A1-adenosine receptor antagonists, induced only a weak inhibition of CPA while 3,7-dimethyl-1-propargylxanthine (DMPX) (10 microM), a selective A2-adenosine receptor antagonist, failed to antagonize the relaxant activity of CPA. These results indicate that a major component of the tracheal relaxant activity of CPA occurred by a mechanism which is insensitive to the antagonist potency of A1- and A1-xanthine adenosine antagonists and therefore was not mediated by A1- or A1-adenosine receptors activation. The relaxant activity of CPCA was inhibited by DMPX, which supported the involvement of A2-adenosine receptors. Glibenclamide (10 microM), an inhibitor of KATP-channels, inhibited the relaxant activity of CPCA, whereas it was without effect on CPA. Iberiotoxin (180 nM), an inhibitor of the large-conductance CA2(+)-activated K+ channel, inhibited the relaxant action of CPA and CPCA. However, verapamil can offset the inhibition of CPA provided by iberiotoxin which suggests that such an antagonism does not represent an interaction between the toxin and CPA at the level of the large-conductance CA2(+)-activated K(+)-channel gating but rather functional antagonism attributable to the promotion of CA2+ influx by the toxin. In contrast, verapamil only partially reversed the inhibition of CPCA relaxant activity provided by iberiotoxin. Taken together, these results suggest that A2-adenosine receptor subtypes are coupled to KATP-channels and large-conductance CA2(+)-activated K(+)-channels in the guinea pig trachea whereas the unidentified adenosine receptor subtype, involved in CPA relaxant activity, is not.

    Topics: Adenosine; Animals; Calcium Channel Blockers; Dose-Response Relationship, Drug; Glyburide; Guinea Pigs; Hypoglycemic Agents; Male; Muscle Contraction; Muscle Relaxation; Muscle, Smooth; Peptides; Potassium Channels; Receptors, Purinergic P1; Theobromine; Trachea; Verapamil

1996