n(6)-cyclopentyladenosine has been researched along with 4-nitrobenzylthioinosine* in 9 studies
9 other study(ies) available for n(6)-cyclopentyladenosine and 4-nitrobenzylthioinosine
Article | Year |
---|---|
The guinea pig atrial A1 adenosine receptor reserve for the direct negative inotropic effect of adenosine.
Although the A1 adenosine receptor (A1 receptor), the main adenosine receptor type in cardiac muscle, is involved in powerful cardioprotective processes such as ischemic preconditioning, the atrial A1 receptor reserve has not yet been quantified for the direct negative inotropic effect of adenosine. In the present study, adenosine concentration-effect (E/c) curves were constructed before and after pretreatment with FSCPX (8-cyclopentyl-N3-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-N1-propylxanthine), an irreversible A1 receptor antagonist, in isolated guinea pig atria. To prevent the intracellular elimination of the administered adenosine, NBTI (S-(2-hydroxy-5-nitrobenzyl)-6-thioinosine), a nucleoside transport inhibitor, was used. As expected, NBTI alone and FSCPX-pretreatment alone shifted the adenosine E/c curve to the left and right, respectively. However, in the presence of NBTI, FSCPX-pretreatment appeared to increase the maximal response to adenosine. By means of the receptorial responsiveness method (RRM), our recently developed procedure, adenosine E/c curves generated in the presence of NBTI were corrected for the bias caused by the endogenous adenosine accumulated by NBTI. The corrected curves indicate a substantial A1 receptor reserve for the direct negative inotropy evoked by adenosine. In addition, our results suggest that accumulation of an endogenous agonist may bias the E/c curve constructed with the same or similar agonist that can lead to seemingly paradoxical results. Topics: Adenosine; Adenosine A1 Receptor Antagonists; Animals; Atrial Function; Dose-Response Relationship, Drug; Guinea Pigs; Heart Atria; In Vitro Techniques; Male; Myocardial Contraction; Receptor, Adenosine A1; Thioinosine; Xanthines | 2013 |
Expression of human equilibrative nucleoside transporter 1 in mouse neurons regulates adenosine levels in physiological and hypoxic-ischemic conditions.
Activation of adenosine A(1) receptors inhibits excitatory synaptic transmission. Equilibrative nucleoside transporters (ENTs) regulate extracellular adenosine levels; however, the role of neuronal ENTs in adenosine influx and efflux during cerebral ischemia has not been determined. We used mice with neuronal expression of human ENT type 1 and wild type (Wt) littermates to compare responses to in vitro hypoxic or ischemic conditions. Extracellular recordings in the CA1 region of hippocampal slices from transgenic (Tg) mice revealed increased basal synaptic transmission, relative to Wt slices, and an absence of 8-cyclopentyl-1,3-dipropyl-xanthine mediated augmentation of excitatory neurotransmission. Adenosine (10-100 μM) had a reduced potency for inhibiting synaptic transmission in slices from Tg mice; inhibitory concentration 50% values were approximately 25 and 50 μM in Wt and Tg slices, respectively. Potency of the A(1) receptor agonist N(6) -cyclopentyladenosine (1 nM-1 μM) was unchanged. Transient hypoxia or oxygen-glucose deprivation produced greater inhibition of excitatory neurotransmission in slices from Wt than Tg, mice. The ENT1 inhibitor S-(4-nitrobenzyl)-6-thioinosine abolished these differences. Taken together, our data provide evidence that neuronal ENTs reduce hypoxia- and ischemia-induced increases in extracellular adenosine levels and suggest that inhibition of neuronal adenosine transporters may be a target for the treatment of cerebral ischemia. Topics: Action Potentials; Adenosine; Adenosine A1 Receptor Antagonists; Animals; Dose-Response Relationship, Drug; Equilibrative Nucleoside Transporter 1; Female; Glucose; Glutathione; Hippocampus; Humans; Hypoxia; In Vitro Techniques; Mice; Mice, Transgenic; Neurons; Patch-Clamp Techniques; Protein Binding; Purinergic P1 Receptor Agonists; Statistics, Nonparametric; Synaptic Transmission; Thioinosine; Tritium; Xanthines | 2011 |
Effect of nucleoside transport blockade on the interstitial adenosine level characterized by a novel method in guinea pig atria.
Several accepted methods are available to estimate the adenosine (Ado) concentration of interstitial fluid ([Ado]ISF) in functioning heart, providing results spanning over nano- to micromolar concentrations. This extremely large range points to the necessity of novel approaches for estimating [Ado]ISF or at least the alteration from basal [Ado]ISF. In the present study, the change in [Ado]ISF was characterized following nucleoside transport (NT) blockade elicited by 10 micromol/L dipyridamole or 10 micromol/L nitrobenzylthioinosine in isolated guinea pig atria, by means of our novel procedure referred to as receptorial responsiveness method (RRM). The RRM provided an index of the change in [Ado]ISF under NT blockade, namely the concentration of N-cyclopentyladenosine (CPA; a relatively stable A1 Ado receptor agonist), which is equieffective with the change in [Ado]ISF regarding the contractility. Our results show that dipyridamole or nitrobenzylthioinosine produced an elevation in [Ado]ISF at the cardiomyocyte A1 Ado receptors equivalent to about 16 or 20 nmol/l CPA, respectively. In addition, nitrobenzylthioinosine was found more appropriate for selective NT blockade than dipyridamole. Topics: Adenosine; Animals; Biological Transport; Dipyridamole; Extracellular Fluid; Guinea Pigs; Heart Atria; Male; Myocardial Contraction; Nucleosides; Thioinosine | 2006 |
Inhibition of nucleoside transport proteins by C8-alkylamine-substituted purines.
4-nitrobenzylthioinosine (NBTI, 1) is a well-known inhibitor for the nucleoside transport protein ENT1. Here we report on the synthesis and the biological evaluation of compounds that are less polar than NBTI. Compound screening in our laboratory indicated that introduction of an alkylamine substituent at the C(8)-position of N(6)-cyclopentyladenosine (CPA, 2) led to an increment in affinity for the transport protein. It was investigated whether this would also apply for NBTI derivatives. Two series of C(8)-alkylamine-substituted compounds were prepared, one in which the nitro group was absent (46-58) and another in which the ribose moiety was replaced by a benzyl group (72-75). Comparison of the biological data of these compounds with 6-benzylthioinosine (4, K(i) = 53 nM) and 9-benzyl-6-(4-nitrobenzylsulfanyl)purine (59, K(i) = 135 nM) confirmed the hypothesis. The K(i) values improved upon elongation of the alkylamine chain from methylamine to n-hexylamine with an optimum for n-pentylamine (50, K(i) = 2.3 nM). Substitution with 2-methylbutylamine (52), cyclopropylamine (53), cyclopentylamine (54, 72), and cyclohexylamine (55, 73) revealed that the presence of a bulky group enhanced the affinity. The presence of tertiary amines obtained by substitution with pyrrolidine, piperidine, and morpholine gave only poor results. For both series substitution with cyclopentylamine was most effective. Compound 54 (LUF5942) proved the most active, showing a comparable affinity (K(i) = 0.64 nM) to NBTI but a significantly lower polar surface area. Topics: Amines; Animals; Biochemistry; Cells, Cultured; CHO Cells; Cricetinae; Cricetulus; Drug Evaluation, Preclinical; Equilibrative Nucleoside Transporter 1; Erythrocyte Membrane; Humans; Nucleoside Transport Proteins; Purines; Receptor, Adenosine A1; Structure-Activity Relationship; Thioinosine | 2005 |
Modulation of GABA release during morphine withdrawal in midbrain neurons in vitro.
Chronic treatment with opioids induces adaptations in neurons leading to tolerance and dependence. Studies have implicated the midbrain periaqueductal gray (PAG) in the expression of many signs of withdrawal. Patch-clamp recording techniques were used to examine whether augmentation of adenylyl cyclase signalling produces hyperexcitation in GABAergic nerve terminals within the mouse PAG. Both the rate of mIPSCs and the amplitude of evoked IPSCs during naloxone-precipitated withdrawal was profoundly enhanced in chronically morphine treated mice, compared to vehicle treated controls, in the presence but not the absence an adenosine A(1) receptor antagonist DPCPX. Enhanced GABAergic transmission in the presence of DPCPX was abolished by blocking protein kinase A. Inhibitors of cAMP transport, phosphodiesterase and nucleotide transport mimicked the effect of DPCPX. Coupling efficacy of micro-receptors to presynaptic inhibition of GABA release was increased in dependent mice in the presence of DPCPX. The increased coupling efficacy was abolished by blocking protein kinase A, which unmasked an underlying micro-receptor tolerance. These findings indicate that enhanced adenylyl cyclase signalling following chronic morphine treatment produces (1) GABAergic terminal hyperexcitability during withdrawal that is retarded by a concomitant increase in endogenous adenosine, and (2) enhanced micro-receptor coupling to presynaptic inhibition that overcomes an underlying tolerance. Topics: Action Potentials; Adenosine; Affinity Labels; Animals; Colforsin; Cyclic AMP; Dipyridamole; Dose-Response Relationship, Drug; Drug Interactions; Enkephalins; Enzyme Inhibitors; gamma-Aminobutyric Acid; In Vitro Techniques; Isoquinolines; Male; Mesencephalon; Mice; Mice, Inbred C57BL; Morphine; Morphine Dependence; Naloxone; Narcotic Antagonists; Narcotics; Neural Inhibition; Neurons; Patch-Clamp Techniques; Periaqueductal Gray; Probenecid; Purinergic P1 Receptor Agonists; Purinergic P1 Receptor Antagonists; Substance Withdrawal Syndrome; Sulfonamides; Synaptic Transmission; Thioinosine; Time Factors; Uricosuric Agents; Vasodilator Agents; Xanthines | 2003 |
Positive inotropic effect of the inhibition of cyclic GMP-stimulated 3',5'-cyclic nucleotide phosphodiesterase (PDE2) on guinea pig left atria in eu- and hyperthyroidism.
The significance of PDE2 on the atrial inotropy was studied in eu- and hyperthyroidism. The contractile force was measured and negative inotropic capacity of N6-cyclopentyladenosine (CPA) was determined on left atria isolated from 8-day thyroxine- or solvent-treated guinea pigs, in the presence or absence of EHNA (adenosine deaminase and PDE2 inhibitor) or NBTI (nucleoside transporter inhibitor). EHNA was administered to inhibit PDE2, while NBTI was used to model the accumulation of endogenous adenosine. The reduction of the contractile force caused by EHNA was smaller in the thyroxine-treated atria than in the solvent-treated samples. Contrary, NBTI induced a decrease in the contractile force without significant difference between the two groups. In addition, EHNA enhanced the efficiency of CPA in thyroxine-treated atria and did not affect it in solvent-treated samples, while the response to CPA was decreased by NBTI in all atria, especially in hyperthyroidism. On the basis of greater retention of the contractile force and sustained/enhanced responsiveness to CPA in the presence of EHNA we conclude that PDE2's inhibition has a significant positive inotropic effect in guinea pig atria and this effect is proven to be augmented in hyperthyroidism. Topics: Adenine; Adenosine; Animals; Cardiotonic Agents; Culture Techniques; Cyclic GMP; Cyclic Nucleotide Phosphodiesterases, Type 2; Guinea Pigs; Heart Atria; Hyperthyroidism; Male; Myocardial Contraction; Phosphoric Diester Hydrolases; Thioinosine | 2003 |
Decreased presynaptic sensitivity to adenosine after cocaine withdrawal.
The nucleus accumbens (NAc) is a site mediating the rewarding properties of drugs of abuse, such as cocaine, amphetamine, opiates, nicotine, and alcohol (Wise and Bozarth, 1987; Koob, 1992; Samson andHarris, 1992; Woolverton and Johnson, 1992; Self and Nestler, 1995; Pontieri et al., 1996). Acute cocaine has been shown to decrease excitatory synaptic transmission mediated by the cortical afferents to the NAc (Nicola et al., 1996), but the effects of long-term cocaine treatment and withdrawal have not been explored. Here, we report that long-term (1 week) withdrawal from chronic cocaine reduced the potency of adenosine to presynaptically inhibit glutamate (Glu) release by activating adenosine A1 receptors. Adenosine A1 receptors were not desensitized, because the potency of the metabolically stable adenosine analog N6-cyclopentyl-adenosine was unchanged after chronic cocaine withdrawal. When adenosine transporters were blocked, the potency of adenosine to inhibit Glu release from naive and cocaine-withdrawn NAc slices was similar. These results suggest that one of the long-term consequences of cocaine withdrawal is an augmented uptake of adenosine. This long-lasting change expressed at the presynaptic excitatory inputs to the medium spiny output neurons in the NAc may help identify new therapeutic targets for the treatment of drug abuse. Topics: 4-(3-Butoxy-4-methoxybenzyl)-2-imidazolidinone; Adenosine; Affinity Labels; Animals; Cocaine; Dipyridamole; Dopamine Uptake Inhibitors; Excitatory Postsynaptic Potentials; Glutamic Acid; Hippocampus; Male; Nucleus Accumbens; Phosphodiesterase Inhibitors; Presynaptic Terminals; Purinergic P1 Receptor Agonists; Rats; Rats, Sprague-Dawley; Stimulation, Chemical; Substance Withdrawal Syndrome; Substance-Related Disorders; Theophylline; Thioinosine; Vasodilator Agents; Xanthines | 1998 |
Purinoceptor modulation of noradrenaline release in rat tail artery: tonic modulation mediated by inhibitory P2Y- and facilitatory A2A-purinoceptors.
1. The effects of analogues of adenosine and ATP on noradrenaline release elicited by electrical stimulation (5 Hz, 2700 pulses) were studied in superfused preparations of rat tail artery. The effects of purinoceptor antagonists, of adenosine deaminase and of adenosine uptake blockade were also examined. Noradrenaline was measured by h.p.l.c. electrochemical detection. 2. The A1-adenosine receptor agonist, N6-cyclopentyladenosine (CPA; 0.1-100 nM) reduced, whereas the A2A-receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680; 3-30 nM) increased evoked noradrenaline overflow. These effects were antagonized by the A1-adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 20 nM) and the A2-adenosine receptor antagonist, 3,7-dimethyl-1-propargylxanthine (DMPX; 100 nM), respectively. The P2Y-purinoceptor agonist, 2-methylthio-ATP (1-100 microM) reduced noradrenaline overflow, an effect prevented by the P2-purinoceptor antagonist, cibacron blue 3GA (100 microM) and suramin (100 microM). 3. Adenosine deaminase (2 u ml-1), DMPX (100 nM) and inhibition of adenosine uptake with S-(p-nitrobenzyl)-6-thioinosine (NBTI; 50 nM) decreased evoked noradrenaline overflow. DPCPX alone did not change noradrenaline overflow but prevented the inhibition caused by NBTI. The P2Y-purinoceptor antagonist, cibacron blue 3GA (100 microM) increased evoked noradrenaline overflow as did suramin, a non-selective P2-antagonist. 4. It is concluded that, in rat tail artery, inhibitory (A1 and P2Y) and facilitatory (A2A) purinoceptors are present and modulate noradrenaline release evoked by electrical stimulation. Endogenous purines tonically modulate noradrenaline release through activation of inhibitory P2Y and facilitatory A2A purinoceptors, whereas a tonic activation of inhibitory A1 purinoceptors seems to be prevented by adenosine uptake. Topics: Adenosine; Adenosine Deaminase; Adenosine Triphosphate; Animals; Arteries; Male; Norepinephrine; Phenethylamines; Rats; Rats, Wistar; Receptors, Purinergic; Tail; Thioinosine; Thionucleotides; Xanthines | 1996 |
Homologous desensitization of the A1-adenosine receptor system in the guinea pig atrioventricular node.
The objective of this study was to determine whether chronic infusion (7 days) of an A1-adenosine receptor (A1-AdoR) agonist, R-N6-phenylisopropyladenosine (R-PIA), causes homologous and/or heterologous desensitization of the atrioventricular (AV) nodal A1-AdoR system in the guinea pig. The negative dromotropic effects of adenosine, the A1-AdoR agonist N6-cyclopentyladenosine and the muscarinic cholinergic agonist carbachol on hearts from control and treated animals were compared. The potencies of adenosine and N6-cyclopentyladenosine to prolong AV nodal conduction time of hearts from treated animals were significantly reduced compared with control. In contrast, no difference in the potency of carbachol to prolong AV nodal conduction time in the hearts from control and R-PIA-treated guinea pigs was found. The densities of A1-AdoRs in atria and ventricles of treated hearts were 54% (P < .05) and 36% (P < .05) lower than in control hearts, respectively. The number of A1-AdoRs with high affinity for agonists was 37% lower (P < .05) in ventricular membranes prepared from hearts of R-PIA-treated guinea pigs than in membranes from control hearts. In contrast, atrial or ventricular muscarinic acetylcholine receptor densities were not different in hearts of control compared with hearts of treated animals. An up-regulation of the density of nucleoside transporter sites was observed in hearts of treated animals. The quantities of Gi and G(o) in atrial membranes prepared from hearts of treated guinea pigs were lower by 46% and 80%, respectively, than the quantities of Gi and G(o) in atrial membranes prepared from hearts of control animals. It was concluded that chronic administration of R-PIA to guinea pigs desensitized the AV node to the negative dromotropic effect of adenosine in a homologous but not a heterologous manner and desensitization of the AV node response to adenosine was associated with down-regulation of A1-Ado receptors, a decrease in the fraction of A1-Ado receptors in the high-affinity state and a decrease in the contents of Gi and G(o) proteins. Topics: Adenosine; Adenosine Diphosphate Ribose; Animals; Atrioventricular Node; Binding Sites; Biological Transport; Carbachol; Cell Membrane; Dipyridamole; Down-Regulation; Female; Gallopamil; GTP-Binding Proteins; Guinea Pigs; Magnesium Chloride; Male; Myocardium; Phenylisopropyladenosine; Purinergic P1 Receptor Agonists; Purinergic P1 Receptor Antagonists; Receptors, Purinergic P1; Signal Transduction; Thioinosine; Time Factors; Virulence Factors, Bordetella | 1995 |