myxothiazol has been researched along with malic-acid* in 6 studies
6 other study(ies) available for myxothiazol and malic-acid
Article | Year |
---|---|
External alternative NADH dehydrogenase of Saccharomyces cerevisiae: a potential source of superoxide.
Three rotenone-insensitive NADH dehydrogenases are present in the mitochondria of yeast Saccharomyces cerevisiae, which lack complex I. To elucidate the functions of these enzymes, superoxide production was determined in yeast mitochondria. The low levels of hydrogen peroxide (0.10 to 0.18 nmol/min/mg) produced in mitochondria incubated with succinate, malate, or NADH were stimulated 9-fold by antimycin A. Myxothiazol and stigmatellin blocked completely hydrogen peroxide formation with succinate or malate, indicating that the cytochrome bc(1) complex is the source of superoxide; however, these inhibitors only inhibited 46% hydrogen peroxide formation with NADH as substrate. Diphenyliodonium inhibited hydrogen peroxide formation (with NADH as substrate) by 64%. Superoxide formation, determined by EPR and acetylated cytochrome c reduction in mitochondria was stimulated by antimycin A, and partially inhibited by myxothiazol and stigmatellin. Proteinase K digestion of mitoplasts reduced 95% NADH dehydrogenase activity with a similar inhibition of superoxide production. Mild detergent treatment of the proteinase-treated mitoplasts resulted in an increase in NADH dehydrogenase activity due to the oxidation of exogenous NADH by the internal NADH dehydrogenase; however, little increase in superoxide production was observed. These results suggest that the external NADH dehydrogenase is a potential source of superoxide in S. cerevisiae mitochondria. Topics: Antifungal Agents; Antimycin A; Electron Transport Complex III; Hydrogen Peroxide; Malates; Methacrylates; Mitochondria; NAD; NADH Dehydrogenase; Polyenes; Rotenone; Saccharomyces cerevisiae; Succinic Acid; Superoxides; Thiazoles | 2003 |
Topology of superoxide production from different sites in the mitochondrial electron transport chain.
We measured production of reactive oxygen species by intact mitochondria from rat skeletal muscle, heart, and liver under various experimental conditions. By using different substrates and inhibitors, we determined the sites of production (which complexes in the electron transport chain produced superoxide). By measuring hydrogen peroxide production in the absence and presence of exogenous superoxide dismutase, we established the topology of superoxide production (on which side of the mitochondrial inner membrane superoxide was produced). Mitochondria did not release measurable amounts of superoxide or hydrogen peroxide when respiring on complex I or complex II substrates. Mitochondria from skeletal muscle or heart generated significant amounts of superoxide from complex I when respiring on palmitoyl carnitine. They produced superoxide at considerable rates in the presence of various inhibitors of the electron transport chain. Complex I (and perhaps the fatty acid oxidation electron transfer flavoprotein and its oxidoreductase) released superoxide on the matrix side of the inner membrane, whereas center o of complex III released superoxide on the cytoplasmic side. These results do not support the idea that mitochondria produce considerable amounts of reactive oxygen species under physiological conditions. Our upper estimate of the proportion of electron flow giving rise to hydrogen peroxide with palmitoyl carnitine as substrate (0.15%) is more than an order of magnitude lower than commonly cited values. We observed no difference in the rate of hydrogen peroxide production between rat and pigeon heart mitochondria respiring on complex I substrates. However, when complex I was fully reduced using rotenone, rat mitochondria released significantly more hydrogen peroxide than pigeon mitochondria. This difference was solely due to an elevated concentration of complex I in rat compared with pigeon heart mitochondria. Topics: Aging; Animals; Antimycin A; Columbidae; Electron Transport; Enzyme Inhibitors; Female; Hydrogen Peroxide; Liver; Malates; Methacrylates; Mitochondria, Liver; Mitochondria, Muscle; Muscle, Skeletal; Myocardium; Oligomycins; Oxidants; Palmitoylcarnitine; Pyruvic Acid; Rats; Rats, Wistar; Reactive Oxygen Species; Reference Standards; Rotenone; Succinic Acid; Superoxide Dismutase; Superoxides; Thiazoles; Uncoupling Agents | 2002 |
Rotenone-insensitive NADH dehydrogenase is a potential source of superoxide in procyclic Trypanosoma brucei mitochondria.
The rotenone-insensitive NADH dehydrogenase isolated from mitochondria of the procyclic form of Trypanosoma brucei has the ability to produce superoxide anions (Biochemistry 41 (2002) 3065). Superoxide production by the purified enzyme was 60% inhibited by diphenyl iodonium (DPI), stimulated significantly by ubiquinone analogues, and unaffected by metal ions. Production of reactive oxygen species (ROS) in intact cells was not affected by addition of rotenone with proline and malate as substrates; however, addition of rotenone inhibited 41% ROS production with succinate as substrate. These results suggest that complex I is not involved in production of ROS and that succinate-linked reversed electron transport occurs in trypanosome mitochondria. Superoxide formation in mitochondria with NADH as substrate was stimulated by antimycin A but was unaffected by myxothiazol plus stigmatellin, indicating that bc(1) complex is not a source of superoxide. DPI and fumarate inhibited by 68 and 36%, respectively, the rate of superoxide production with NADH as substrate. Addition of both fumarate and DPI blocked 70% superoxide production in mitochondria, a total inhibition similar to that observed with DPI addition alone. These results suggest that the rotenone-insensitive NADH dehydrogenase in addition to NADH fumarate reductase is a potential source of superoxide production in procyclic trypanosome mitochondria. Topics: Animals; Anti-Bacterial Agents; Antimycin A; Biphenyl Compounds; Fumarates; Malates; Methacrylates; Mitochondria; NAD; NADH Dehydrogenase; Onium Compounds; Polyenes; Proline; Rotenone; Substrate Specificity; Succinic Acid; Superoxides; Thiazoles; Trypanosoma brucei brucei; Ubiquinone; Uncoupling Agents | 2002 |
Generation of protonic potential by the bd-type quinol oxidase of Azotobacter vinelandii.
Inside-out subcellular vesicles of Azotobacter vinelandii are found to produce delta pH and delta psi (interior acidic and positive) when oxidising malate or menadiol. These effects are inherent in both Cyd+ Cyo- (lacking the o-type oxidase) and Cyd- Cyo+ (lacking the bd-type oxidase) strains. They appear to be myxothiazol-sensitive in the Cyd- Cyo+ strain but not in the Cyd+ Cyo- strain. The H+/e- ratio for the terminal part of respiratory chain of a bd-type oxidase overproducing strain is established as being close to 1. It is also shown that NADH oxidation by the vesicles from the Cyd- Cyo+ strain is sensitive to low concentrations of myxothiazol and antimycin A whereas that of the Cyd+ Cyo- strain is resistant to these Q-cycle inhibitors. It is concluded that (i) the bd-type oxidase of A. vinelandii is competent in generating a protonic potential but its efficiency is lower than that of the o-type oxidase and (ii) Q-cycle does operate in the o-type cytochrome oxidase terminated branch of the A. vinelandii respiratory chain and does not in the bd-type quinol oxidase terminated branch. These relationships are discussed in the context of the respiratory protection function of the bd-type oxidase in A. vinelandii. Topics: Anaerobiosis; Azotobacter vinelandii; Carbonyl Cyanide m-Chlorophenyl Hydrazone; Cell Fractionation; Cytochrome b Group; Cytochromes; Electron Transport Chain Complex Proteins; Escherichia coli Proteins; Hydrogen-Ion Concentration; Kinetics; Malates; Methacrylates; Oxidoreductases; Subcellular Fractions; Thiazoles; Valinomycin; Vitamin K | 1997 |
[The effect of inhibitors of the Q-cycle on cyano-resistant oxidation of malate by rat liver mitochondria in the presence of menadione].
Based on the inhibitor analysis data, it has been assumed that the Q-cycle plays a role in the cyano-resistant malate oxidation induced by menadione (90 microM) in rat liver mitochondria. The extent of involvement of Q-cycle transmitters in the cyano-resistant respiration of mitochondria is determined by the mode of the electron supply into the Q-cycle. In the presence of dicumarol, i.e., under conditions when CoQ and menadione are reduced by NADH-quinone reductase, the bulk of the electrons pass through the o-center of the Q-cycle. Myxothiazole inhibits the respiration by 70-80%, while antimycin--by only 20-30%. In the presence of myxothiazole and antimycin menadione oxidizes cytochrome b. In the presence of rotenone, when menadione is reduced by DT-diaphorase, the rate of cyano-resistant respiration decreases approximately twofold; its sensitivity towards myxothiazole and antimycin drops down to 40%. In the absence of rotenone and dicumarol the Q-cycle does not participate in the cyano-resistant respiration which under these conditions is insensitive either to myxothiazole or to antimycin. It is concluded that the mechanism of cyano-resistant respiration changes with an alteration in the rates of quinones K3 and CoQ reduction. The mechanism of cyano-resistant respiration is also controlled by the medium tonicity. A reduction in the medium tonicity decrease the participation of the Q-cycle and, correspondingly, the sensitivity of the cyano-resistant respiration towards myxothiazole and antimycin. Topics: Animals; Antimycin A; Cyanides; Electron Transport; Malates; Methacrylates; Mitochondria, Liver; NAD(P)H Dehydrogenase (Quinone); Oxidation-Reduction; Rats; Rotenone; Thiazoles; Ubiquinone; Vitamin K | 1993 |
Pathways of hydrogen peroxide generation in guinea pig cerebral cortex mitochondria.
The production of H2O2 by brain mitochondria was monitored employing a new technique based on the horseradish peroxidase dependent oxidation of acetylated ferrocytochrome c. It was shown that brain mitochondria release H2O2 by an intermediate autooxidation at the QH2-cytochrome c oxidoreductase level (induced by antimycin A and inhibited by myxothiazol). With both succinate and pyruvate plus malate this H2O2 release is inhibited at high substrate concentrations. With pyruvate plus malate a second source of H2O2 could be detected, apparently from autoxidation at the NADH dehydrogenase level. With alpha-glycerophosphate some H2O2 derives from autooxidation at the alpha-glycerophosphate dehydrogenase. The NADH dehydrogenase dependent, but not the QH2-cytochrome c oxidoreductase dependent H2O2 was significantly stimulated upon depletion of the mitochondrial glutathione. Topics: Animals; Antimycin A; Cerebral Cortex; Glutathione Peroxidase; Guinea Pigs; Horseradish Peroxidase; Hydrogen Peroxide; Malates; Methacrylates; Mitochondria; NADH Dehydrogenase; Pyruvates; Pyruvic Acid; Thiazoles | 1988 |