myxol has been researched along with nostoxanthin* in 2 studies
2 other study(ies) available for myxol and nostoxanthin
Article | Year |
---|---|
Molecular genetic and chemotaxonomic characterization of the terrestrial cyanobacterium Nostoc commune and its neighboring species.
The phylogeny of the terrestrial cyanobacterium Nostoc commune and its neighboring Nostoc species was studied using molecular genetic and chemotaxonomic approaches. At least eight genotypes of N. commune were characterized by the differences among 16S rRNA gene sequences and the petH gene encoding ferredoxin-NADP⁺ oxidoreductase and by random amplified polymorphic DNA analysis. The genotypes of N. commune were distributed in Japan without regional specificity. The nrtP gene encoding NrtP-type nitrate/nitrite permease was widely distributed in the genus Nostoc, suggesting that the occurrence of the nrtP gene can be one of the characteristic features that separate cyanobacteria into two groups. The wspA gene encoding a 36-kDa water stress protein was only found in N. commune and Nostoc verrucosum, suggesting that these Nostoc species that form massive colonies with extracellular polysaccharides can be exclusively characterized by the occurrence of the wspA gene. Fifteen species of Nostoc and Anabaena were investigated by comparing their carotenoid composition. Three groups with distinct patterns of carotenoids were related to the phylogenic tree constructed on the basis of 16S rRNA sequences. Nostoc commune and Nostoc punctiforme were clustered in one monophyletic group and characterized by the occurrence of nostoxanthin, canthaxanthin, and myxol glycosides. Topics: Anabaena; Base Sequence; Canthaxanthin; Carotenoids; Genes, rRNA; Genetic Variation; Japan; Molecular Sequence Data; Nitrates; Nitrites; Nostoc commune; Phylogeny; RNA, Ribosomal, 16S; Xanthophylls | 2012 |
2,2'-beta-hydroxylase (CrtG) is involved in carotenogenesis of both nostoxanthin and 2-hydroxymyxol 2'-fucoside in Thermosynechococcus elongatus strain BP-1.
We identified the molecular structures, including the stereochemistry, of all carotenoids in Thermosynechococcus elongatus strain BP-1. The major carotenoid was beta-carotene, and its hydroxyl derivatives of (3R)-beta-cryptoxanthin, (3R,3'R)-zeaxanthin, (2R,3R,3'R)-caloxanthin and (2R,3R,2'R,3'R)-nostoxanthin were also identified. The myxol glycosides were identified as (3R,2'S)-myxol 2'-fucoside and (2R,3R,2'S)-2-hydroxymyxol 2'-fucoside. 2-Hydroxymyxol 2'-fucoside is a novel carotenoid, and similar carotenoids of 4-hydroxymyxol glycosides were previously named aphanizophyll. Ketocarotenoids, such as echinenone and 4-ketomyxol, which are unique carotenoids in cyanobacteria, were absent, and genes coding for both beta-carotene ketolases, crtO and crtW, were absent in the genome. From a homology search, the Tlr1917 amino acid sequence was found to be 41% identical to 2,2'- beta-hydroxylase (CrtG) from Brevundimonas sp. SD212, which produces nostoxanthin from zeaxanthin. In the crtG disruptant mutant, 2-hydroxymyxol 2'-fucoside, caloxanthin and nostoxanthin were absent, and the levels of both myxol 2'-fucoside and zeaxanthin were higher. Therefore, the gene has a CrtG function for both myxol to 2-hydroxymyxol and zeaxanthin to nostoxanthin. This is the first functional identification of CrtG in cyanobacteria. We also investigated the distribution of crtG-like genes, and 2-hydroxymyxol and/or nostoxanthin, in cyanobacteria. Based on the identification of the carotenoids and the completion of the entire nucleotide sequence of the genome in T. elongatus, we propose a biosynthetic pathway of the carotenoids and the corresponding genes and enzymes. Topics: Bacterial Proteins; beta Carotene; Carotenoids; Chromatography, High Pressure Liquid; Cyanobacteria; DNA, Bacterial; Fucose; Genes, Bacterial; Glycosides; Mixed Function Oxygenases; Mutation; Stereoisomerism; Xanthophylls | 2008 |