myricetin-3-o-rhamnoside has been researched along with myricetin* in 4 studies
4 other study(ies) available for myricetin-3-o-rhamnoside and myricetin
Article | Year |
---|---|
Phenolic Compounds, Volatiles and Antioxidant Capacity of White Myrtle Berry Liqueurs.
Topics: Antioxidants; Cyclohexanols; Eucalyptol; Flavonoids; Fruit; Galactosides; Gallic Acid; Mannosides; Monoterpenes; Myrtus; Phenols; Terpenes; Volatile Organic Compounds | 2017 |
The role of the glycosyl moiety of myricetin derivatives in anti-HIV-1 activity in vitro.
Plant extracts are sources of valuable compounds with biological activity, especially for the anti-proliferative activity against pathogens or tumor cells. Myricetin is a flavonoid found in several plants that has been described as an inhibitor of Human immunodeficiency virus type 1 (HIV-1) through its action against the HIV reverse transcriptase, but myricetin derivatives have not been fully studied. The aim of this study was to evaluate the anti-HIV-1 activity of glycosylated metabolites obtained from Marcetia taxifolia and derived from myricetin: myricetin rhamnoside and myricetin 3-(6-rhamnosylgalactoside).. Compounds were obtained from organic extracts by maceration of aerial parts of M. taxifolia. All biological assays were performed in the MT4 cell line. Antiviral activity was measured as inhibition of p24 and reverse transcriptase with a fluorescent assay.. Both flavonoids have antiviral activity in vitro, with an EC50 of 120 µM for myricetin 3-rhamnoside (MR) and 45 µM for myricetin 3-(6-rhamnosylgalactoside) (MRG), both significantly lower than the EC50 of myricetin (230 µM). Although both compounds inhibited the reverse transcriptase activity, with an IC50 of 10.6 µM for MR and 13.8 µM for MRG, myricetin was the most potent, with an IC50 of 7.6 µM, and an inhibition greater than 80%. Molecular docking approach showed correlation between the free energy of binding with the assays of enzyme inhibition.. The results suggest that glycosylated moiety might enhance the anti-HIV-1 activity of myricetin, probably by favoring the internalization of the flavonoid into the cell. The inhibition of the HIV-1 reverse transcriptase is likely responsible for the antiviral activity. Topics: Anti-HIV Agents; Cell Line; Flavonoids; Galactosides; Glycosylation; HIV Core Protein p24; HIV Infections; HIV Reverse Transcriptase; HIV-1; Humans; Mannosides; Molecular Docking Simulation; Reverse Transcriptase Inhibitors; Virus Replication | 2017 |
Inter-population and inter-organ distribution of the main polyphenolic compounds of Epilobium angustifolium.
Rosebay willowherb (Epilobium angustifolium) contains large amounts of polyphenolic compounds, including tellimagrandin I-based oligomeric ellagitannins (ETs). The aim of this study was to assess the interpopulational and inter-organ variability of the polyphenol fingerprint of E. angustifolium. Seven ETs, 11 flavonol glycosides and neochlorogenic acid were quantified by UHPLC-DAD-ESI-QqQ-MS in the leaves, flowers and stem parts of plants from 10 populations. Total polyphenol content of leaves and flowers ranged from 150 to 200 mg/g dry wt, of which 90% was constituted by dimeric to heptameric ETs. Flowers contained, on average, 10% more oenothein B (dimeric ET) and 2 times less oenothein A (trimeric ET) than leaves. Tetrameric and pentameric ETs exhibited rather similar levels in leaves and flowers whereas hexameric and heptameric were 3-4 times more abundant in flowers than in leaves. Quercetin-3-O-rhamnoside, myricetin-3-O-rhamnoside and kaempferol-3-O-rhamnoside were specific to flower tissue and were absent from leaves. The inflorescence stem showed the highest content in total polyphenols with an average of 250 mg/g dry wt and contained remarkably large amounts of oenothein B and A. Polyphenol content steadily decreased along the inflorescence stem and reached its lowest level in the vegetative part of the stem. The interpopulational variability of most polyphenols was within a two- to threefold range across the 10 sampled populations. Myricetin-3-O-glucoside and myricetin-3-O-glucuronide, however, showed a more population-specific distribution with concentrations varying from 0 to 2.3 mg/g dry wt. Finally, this study showed that the levels of oenothein B and A in the plant are not interdependent but that their relative abundance is constant within a population. Topics: Epilobium; Flavonoids; Flavonols; Gallic Acid; Glucosides; Glycosides; Hydrolyzable Tannins; Kaempferols; Mannosides; Onagraceae; Plant Leaves; Polyphenols; Quercetin | 2017 |
In vitro antioxidant and antigenotoxic potentials of myricetin-3-o-galactoside and myricetin-3-o-rhamnoside from Myrtus communis: modulation of expression of genes involved in cell defence system using cDNA microarray.
Antioxidant activity of myricetin-3-o-galactoside and myricetin-3-o-rhamnoside, isolated from the leaves of Myrtus communis, was determined by the ability of each compound to inhibit xanthine oxidase activity, lipid peroxidation and to scavenge the free radical 1,1-diphenyl-2-picrylhydrazyl. Antimutagenic activity was assessed using the SOS chromotest and the Comet assay. The IC50 values of lipid peroxidation by myricetin-3-o-galactoside and myricetin-3-o-rhamnoside are respectively 160 microg/ml and 220 microg/ml. At a concentration of 100 microg/ml, the two compounds showed the most potent inhibitory effect of xanthine oxidase activity by respectively, 57% and 59%. Myricetin-3-o-rhamnoside was a very potent radical scavenger with an IC50 value of 1.4 microg/ml. Moreover, these two compounds induced an inhibitory activity against nifuroxazide, aflatoxine B1 and H2O2 induced mutagenicity. The protective effect exhibited by these molecules was also determined by analysis of gene expression as response to an oxidative stress using a cDNA micro-array. Myricetin-3-o-galactoside and myricetin-3-o-rhamnoside modulated the expression patterns of cellular genes involved in oxidative stress, respectively (GPX1, TXN, AOE372, SEPW1, SHC1) and (TXNRD1, TXN, SOD1 AOE372, SEPW1), in DNA damaging repair, respectively (XPC, LIG4, RPA3, PCNA, DDIT3, POLD1, XRCC5, MPG) and (TDG, PCNA, LIG4, XRCC5, DDIT3, MSH2, ERCC5, RPA3, POLD1), and in apoptosis (PARP). Topics: Antimutagenic Agents; Antioxidants; Biphenyl Compounds; Cell Survival; Comet Assay; DNA Repair; DNA, Complementary; Enzyme Inhibitors; Flavonoids; Galactosides; Gene Expression Regulation; Humans; Image Processing, Computer-Assisted; In Situ Hybridization; K562 Cells; Lipid Peroxidation; Mannosides; Mutagenicity Tests; Myrtus; Oligonucleotide Array Sequence Analysis; Picrates; Plant Extracts; Xanthine Oxidase | 2008 |