myotoxin-a and dimyristoylphosphatidylserine

myotoxin-a has been researched along with dimyristoylphosphatidylserine* in 2 studies

Other Studies

2 other study(ies) available for myotoxin-a and dimyristoylphosphatidylserine

ArticleYear
A calorimetric examination of the effect of myotoxin a on the thermotropic phase behavior of model lipid membranes.
    Chemistry and physics of lipids, 1987, Volume: 45, Issue:1

    The effect of myotoxin a on the thermotropic phase behavior of aqueous dispersions of dimyristoyl phosphatidylcholine (DMPC) and dimyristoyl phosphatidylserine (DMPS) was examined using differential scanning calorimetry (DSC). Myotoxin a significantly altered the normal phase behavior of DMPC in a concentration dependent fashion. This effect is perturbed by Ca2+ and is sensitive to ionic strength and pH. High concentrations of toxin eliminate the characteristic pretransition associated with the polar head group of DMPC. They also increase the temperature of the main gel-to-liquid crystal transition from 23 degrees C to 32-35 degrees C. At low concentrations of toxin, the first visible effect is upon the pretransition which is split into two components that diminish with time. The main transition is less affected at low toxin concentrations, although the magnitude of the transition is reduced while it is simultaneously shifted to higher temperatures. The main transition is also split into multiple components. The toxin also had pH specific effects on the phase behavior of DMPS. Above physiological pH (8.5) the normal transition of DMPS at 36-38 degrees C was split in the presence of myotoxin a and new components appeared centered at 31 degrees C and 35 degrees C. These observations are consistent with reports that the skeletal muscle membrane system is the major site of the myonecrotic effect of myotoxin a.

    Topics: Calorimetry; Crotalid Venoms; Dimyristoylphosphatidylcholine; Liposomes; Models, Biological; Phosphatidylserines

1987
Interaction of myotoxin a with artificial membranes: Raman spectroscopic investigation.
    Biochemistry, 1985, Dec-17, Volume: 24, Issue:26

    Myotoxin a from the venom of Crotalus viridis viridis (prairie rattlesnake) is a small protein which is responsible for myonecrosis. It is a basic protein with 42 amino acid residues of known sequence. Three disulfide bonds give it a highly compact structure. Microscopic examination of the toxin's effects reveals that the most pronounced and earliest visible damage occurs intracellularly, in the sarcoplasmic reticulum membrane system of skeletal muscle. A better understanding of its mechanism of action is therefore of particular interest. The interaction of myotoxin a with artificial membranes (multibilamellar phospholipid dispersions) was investigated by using dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylserine (DMPS). Two regions of the Raman spectrum were examined for information: the C-H stretching region between 2800 and 3000 cm-1 and the C-C stretching region between 1000 and 1300 cm-1. The effects of myotoxin a on the thermotropic phase behavior of the artificial membranes were determined. This was done by monitoring three structurally sensitive Raman intensity ratios, I2932/2880, I2880/2850, and I1088/1126. It was found that myotoxin alpha destabilized the ordered structure of the gel phase of phospholipid bilayers. This effect was seen with both DMPC and DMPS. The pretransition of DMPC was perturbed by myotoxin a, while the main gel to liquid-crystal phase transition temperature was decreased. The effect of myotoxin a on the phase behavior of DMPS was found to be pH dependent with the least effect observed at low pH values. These results suggest the involvement of negatively charged phosphate groups of phospholipids in the interaction of myotoxin a with artificial membranes.

    Topics: Binding Sites; Crotalid Venoms; Dimyristoylphosphatidylcholine; Hydrogen-Ion Concentration; Membranes, Artificial; Molecular Conformation; Phosphatidylserines; Spectrum Analysis, Raman; Thermodynamics

1985