myelin-basic-protein has been researched along with teriflunomide* in 2 studies
1 review(s) available for myelin-basic-protein and teriflunomide
Article | Year |
---|---|
Multiple sclerosis therapies: molecular mechanisms and future.
The current treatments for multiple sclerosis (MS) are, by many measures, not satisfactory. The original interferon-β therapies were not necessarily based on an extensive knowledge of the pathophysiological mechanisms of the disease. As more and more insight has been acquired about the autoimmune mechanisms of MS and, in particular, the molecular targets involved, several treatment approaches have emerged. In this chapter, we highlight both promising preclinical approaches and therapies in late stage clinical trials that have been developed as a result of the improved understanding of the molecular pathophysiology of MS. These clinical stage therapies include oral agents, monoclonal antibodies, and antigen-specific therapies. Particular emphasis is given to the molecular targets when known and any safety concerns that have arisen because, despite the need for improved efficacy, MS remains a disease in which the safety of any agent remains of paramount importance. Topics: Alemtuzumab; Animals; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antibodies, Monoclonal, Murine-Derived; Antibodies, Neoplasm; Cladribine; Crotonates; Daclizumab; Dimethyl Fumarate; Encephalomyelitis, Autoimmune, Experimental; Fingolimod Hydrochloride; Fumarates; Humans; Hydroxybutyrates; Immunoglobulin G; Immunosuppressive Agents; Immunotherapy; Mice; Multiple Sclerosis; Myelin Basic Protein; Nitriles; Peptide Fragments; Propylene Glycols; Quinolones; Rituximab; Sphingosine; Toluidines; Vaccines, DNA | 2010 |
1 other study(ies) available for myelin-basic-protein and teriflunomide
Article | Year |
---|---|
Teriflunomide promotes oligodendroglial differentiation and myelination.
Multiple sclerosis (MS) is a neuroinflammatory autoimmune disease of the central nervous system (CNS) which in most cases initially presents with episodes of transient functional deficits (relapsing-remitting MS; RRMS) and eventually develops into a secondary progressive form (SPMS). Aside from neuroimmunological activities, MS is also characterized by neurodegenerative and regenerative processes. The latter involve the restoration of myelin sheaths-electrically insulating structures which are the primary targets of autoimmune attacks. Spontaneous endogenous remyelination takes place even in the adult CNS and is primarily mediated by activation, recruitment, and differentiation of resident oligodendroglial precursor cells (OPCs). However, the overall efficiency of remyelination is limited and further declines with disease duration and progression. From a therapeutic standpoint, it is therefore key to understand how oligodendroglial maturation can be modulated pharmacologically. Teriflunomide has been approved as a first-line treatment for RRMS in the USA and the European Union. As the active metabolite of leflunomide, an established disease-modifying anti-rheumatic drug, it mainly acts via an inhibition of de novo pyrimidine synthesis exerting a cytostatic effect on proliferating B and T cells.. We investigated teriflunomide-dependent effects on primary rat oligodendroglial homeostasis, proliferation, and differentiation related to cellular processes important for myelin repair hence CNS regeneration in vitro. To this end, several cellular parameters, including specific oligodendroglial maturation markers, in vitro myelination, and p53 family member signaling, were examined by means of gene/protein expression analyses. The rate of myelination was determined using neuron-oligodendrocyte co-cultures.. Low teriflunomide concentrations resulted in cell cycle exit while higher doses led to decreased cell survival. Short-term teriflunomide pulses can efficiently promote oligodendroglial cell differentiation suggesting that young, immature cells could benefit from such stimulation. In vitro myelination can be boosted by means of an early stimulation window with teriflunomide. p73 signaling is functionally involved in promoting OPC differentiation and myelination.. Our findings indicate a critical window of opportunity during which regenerative oligodendroglial activities including myelination of CNS axons can be stimulated by teriflunomide. Topics: 2',3'-Cyclic-Nucleotide Phosphodiesterases; Animals; Animals, Newborn; Basic Helix-Loop-Helix Transcription Factors; Cell Differentiation; Cells, Cultured; Cerebral Cortex; Coculture Techniques; Crotonates; Exportin 1 Protein; Female; Gene Expression Regulation; Hydroxybutyrates; Karyopherins; Male; Myelin Basic Protein; Myelin Sheath; Nerve Growth Factor; Nerve Tissue Proteins; Neurons; Nitriles; Oligodendrocyte Precursor Cells; Oligodendroglia; Rats; Receptors, Cytoplasmic and Nuclear; Toluidines | 2018 |