muromonab-cd3 and 2-aminoethoxydiphenyl-borate

muromonab-cd3 has been researched along with 2-aminoethoxydiphenyl-borate* in 17 studies

Other Studies

17 other study(ies) available for muromonab-cd3 and 2-aminoethoxydiphenyl-borate

ArticleYear
The Mechanism of Action of Ghrelin and Motilin in the Pacemaker Potentials of Interstitial Cells of Cajal from the Murine Small Intestine.
    Molecules and cells, 2019, Jun-30, Volume: 42, Issue:6

    Interstitial cells of Cajal (ICCs) are pacemaker cells that exhibit periodic spontaneous depolarization in the gastrointestinal (GI) tract and generate pacemaker potentials. In this study, we investigated the effects of ghrelin and motilin on the pacemaker potentials of ICCs isolated from the mouse small intestine. Using the whole-cell patch-clamp configuration, we demonstrated that ghrelin depolarized pacemaker potentials of cultured ICCs in a dose-dependent manner. The ghrelin receptor antagonist [D-Lys] GHRP-6 completely inhibited this ghrelin-induced depolarization. Intracellular guanosine 5'-diphosphate-β-S and pre-treatment with Ca

    Topics: Acetophenones; Amides; Animals; Benzopyrans; Boron Compounds; Calcium; Carbazoles; Gastrointestinal Motility; Ghrelin; Inositol 1,4,5-Trisphosphate Receptors; Interstitial Cells of Cajal; Intestine, Small; Macrocyclic Compounds; Membrane Potentials; Mice; Mice, Inbred ICR; Motilin; Oligopeptides; Oxazoles; Protein Kinase C; Pyridines; Receptors, Ghrelin; rho-Associated Kinases; Signal Transduction; Staurosporine; Thapsigargin

2019
Moderate endoplasmic reticulum stress activates a PERK and p38-dependent apoptosis.
    Cell stress & chaperones, 2017, Volume: 22, Issue:1

    Topics: Animals; Apoptosis; Boron Compounds; Cell Line; Cinnamates; Cricetinae; eIF-2 Kinase; Endoplasmic Reticulum Stress; Glycosylation; Hexosyltransferases; Inhibitor of Apoptosis Proteins; Macrocyclic Compounds; Membrane Proteins; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Myeloid Cell Leukemia Sequence 1 Protein; Oxazoles; p38 Mitogen-Activated Protein Kinases; RNA Splicing; RNA, Messenger; Signal Transduction; Temperature; Thiourea; Tunicamycin; X-Box Binding Protein 1

2017
Potentiation of neurite outgrowth by brexpiprazole, a novel serotonin-dopamine activity modulator: a role for serotonin 5-HT1A and 5-HT2A receptors.
    European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology, 2015, Volume: 25, Issue:4

    Brexpiprazole, a novel atypical antipsychotic drug, is currently being tested in clinical trials for treatment of psychiatric disorders, such as schizophrenia and major depressive disorder. The drug is known to act through a combination of partial agonistic activity at 5-hydroxytryptamine (5-HT)1A, and dopamine D2 receptors, and antagonistic activity at 5-HT2A receptors. Accumulating evidence suggests that antipsychotic drugs act by promoting neurite outgrowth. In this study, we examined whether brexpiprazole affected neurite outgrowth in cell culture. We found that brexpiprazole significantly potentiated nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells, in a concentration dependent manner. The selective 5-HT1A receptor antagonist, WAY-100,635, was able to block the effects of brexpiprazole on neurite outgrowth, unlike the selective dopamine D2 receptor antagonist, raclopride. Furthermore, the selective 5-HT2A receptor antagonist M100907, but not DOI (5-HT2A receptor agonist), significantly potentiated NGF-induced neurite outgrowth. Moreover, xestospongin C and 2-aminoethoxydiphenyl borate (2-APB), both specific inhibitors of inositol 1,4,5-triphosphate (IP3) receptors, significantly blocked the effects of brexpiprazole. These findings suggest that brexpiprazole-induced neurite outgrowth is mediated through 5-HT1A and 5-HT2A receptors, and subsequent Ca(2+) signaling via IP3 receptors.

    Topics: Animals; Aripiprazole; Boron Compounds; Dose-Response Relationship, Drug; Drug Synergism; Fluorobenzenes; HSP90 Heat-Shock Proteins; Inositol 1,4,5-Trisphosphate Receptors; Macrocyclic Compounds; Nerve Growth Factor; Neurites; Oxazoles; PC12 Cells; Piperazines; Piperidines; Pyridines; Quinolones; Rats; Receptor, Serotonin, 5-HT1A; Receptor, Serotonin, 5-HT2A; Serotonin Agents; Thiophenes

2015
Interactions of antagonists with subtypes of inositol 1,4,5-trisphosphate (IP3) receptor.
    British journal of pharmacology, 2014, Volume: 171, Issue:13

    Inositol 1,4,5-trisphosphate receptors (IP3 Rs) are intracellular Ca(2+) channels. Interactions of the commonly used antagonists of IP3Rs with IP3R subtypes are poorly understood.. IP3-evoked Ca(2+) release from permeabilized DT40 cells stably expressing single subtypes of mammalian IP3R was measured using a luminal Ca(2+) indicator. The effects of commonly used antagonists on IP3-evoked Ca(2+) release and (3) H-IP3 binding were characterized.. Functional analyses showed that heparin was a competitive antagonist of all IP3R subtypes with different affinities for each (IP3R3 > IP3R1 ≥ IP3R2). This sequence did not match the affinities for heparin binding to the isolated N-terminal from each IP3R subtype. 2-aminoethoxydiphenyl borate (2-APB) and high concentrations of caffeine selectively inhibited IP3R1 without affecting IP3 binding. Neither Xestospongin C nor Xestospongin D effectively inhibited IP3-evoked Ca(2+) release via any IP3R subtype.. Heparin competes with IP3, but its access to the IP3-binding core is substantially hindered by additional IP3R residues. These interactions may contribute to its modest selectivity for IP3R3. Practicable concentrations of caffeine and 2-APB inhibit only IP3R1. Xestospongins do not appear to be effective antagonists of IP3Rs.

    Topics: Animals; Boron Compounds; Caffeine; Calcium; Cell Line; Chickens; Heparin; Inositol 1,4,5-Trisphosphate Receptors; Macrocyclic Compounds; Oxazoles

2014
Important role of PLC-γ1 in hypoxic increase in intracellular calcium in pulmonary arterial smooth muscle cells.
    American journal of physiology. Lung cellular and molecular physiology, 2013, Feb-01, Volume: 304, Issue:3

    An increase in intracellular calcium concentration ([Ca(2+)](i)) in pulmonary arterial smooth muscle cells (PASMCs) induces hypoxic cellular responses in the lungs; however, the underlying molecular mechanisms remain incompletely understood. We report, for the first time, that acute hypoxia significantly enhances phospholipase C (PLC) activity in mouse resistance pulmonary arteries (PAs), but not in mesenteric arteries. Western blot analysis and immunofluorescence staining reveal the expression of PLC-γ1 protein in PAs and PASMCs, respectively. The activity of PLC-γ1 is also augmented in PASMCs following hypoxia. Lentiviral shRNA-mediated gene knockdown of mitochondrial complex III Rieske iron-sulfur protein (RISP) to inhibit reactive oxygen species (ROS) production prevents hypoxia from increasing PLC-γ1 activity in PASMCs. Myxothiazol, a mitochondrial complex III inhibitor, reduces the hypoxic response as well. The PLC inhibitor U73122, but not its inactive analog U73433, attenuates the hypoxic vasoconstriction in PAs and hypoxic increase in [Ca(2+)](i) in PASMCs. PLC-γ1 knockdown suppresses its protein expression and the hypoxic increase in [Ca(2+)](i). Hypoxia remarkably increases inositol 1,4,5-trisphosphate (IP(3)) production, which is blocked by U73122. The IP(3) receptor (IP(3)R) antagonist 2-aminoethoxydiphenyl borate (2-APB) or xestospongin-C inhibits the hypoxic increase in [Ca(2+)](i). PLC-γ1 knockdown or U73122 reduces H(2)O(2)-induced increase in [Ca(2+)](i) in PASMCs and contraction in PAs. 2-APB and xestospongin-C produce similar inhibitory effects. In conclusion, our findings provide novel evidence that hypoxia activates PLC-γ1 by increasing RISP-dependent mitochondrial ROS production in the complex III, which causes IP(3) production, IP(3)R opening, and Ca(2+) release, playing an important role in hypoxic Ca(2+) and contractile responses in PASMCs.

    Topics: Animals; Boron Compounds; Calcium; Electron Transport Complex III; Estrenes; Gene Expression; Hypoxia; Inositol 1,4,5-Trisphosphate; Inositol 1,4,5-Trisphosphate Receptors; Lentivirus; Macrocyclic Compounds; Methacrylates; Mice; Muscle Contraction; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Oxazoles; Phospholipase C gamma; Pulmonary Artery; Pyrrolidinones; Reactive Oxygen Species; RNA, Small Interfering; Thiazoles; Vasoconstriction

2013
Interleukin-13 enhanced Ca2+ oscillations in airway smooth muscle cells.
    Cytokine, 2012, Volume: 57, Issue:1

    Physiological mechanisms associated with interleukin-13 (IL-13), a key cytokine in asthma, in intracellular Ca(2+) signaling in airway smooth muscle cells (ASMCs) remain unclear. The aim of this study was to assess effects of IL-13 on Ca(2+) oscillations in response to leukotriene D4 (LTD4) in human cultured ASMCs. LTD4-induced Ca(2+) oscillations in ASMCs pretreated with IL-13 were imaged by confocal microscopy. mRNA expressions of cysteinyl leukotriene 1 receptors (CysLT1R), CD38, involved with the ryanodine receptors (RyR) system, and transient receptor potential canonical (TRPC), involved with store-operated Ca(2+) entry (SOCE), were determined by real-time PCR. In IL-13-pretreated ASMCs, frequency of LTD4-induced Ca(2+) oscillations and number of oscillating cells were significantly increased compared with untreated ASMCs. Both xestospongin C, a specific inhibitor of inositol 1,4,5-triphosphate receptors (IP(3)R), and ryanodine or ruthenium red, inhibitors of RyR, partially blocked LTD4-induced Ca(2+) oscillations. Ca(2+) oscillations were almost completely inhibited by 50 μM of 2-aminoethoxydiphenyl borate (2-APB), which dominantly blocks SOCE but not IP(3)R at this concentration. Pretreatment with IL-13 increased the mRNA expressions of CysLT1R and CD38, but not of TRPC1 and TRPC3. We conclude that IL-13 enhances frequency of LTD4-induced Ca(2+) oscillations in human ASMCs, which may be cooperatively modulated by IP(3)R, RyR systems and possibly by SOCE.

    Topics: ADP-ribosyl Cyclase 1; Aged; Boron Compounds; Calcium; Calcium Signaling; Cell Count; Female; Gene Expression Regulation; Humans; Inositol 1,4,5-Trisphosphate Receptors; Interleukin-13; Leukotriene D4; Lung; Macrocyclic Compounds; Male; Myocytes, Smooth Muscle; Oxazoles; Receptors, Leukotriene; RNA, Messenger; Ruthenium Red; Ryanodine; Ryanodine Receptor Calcium Release Channel; TRPC Cation Channels

2012
VEGF-induced retinal angiogenic signaling is critically dependent on Ca²⁺ signaling by Ca²⁺/calmodulin-dependent protein kinase II.
    Investigative ophthalmology & visual science, 2011, May-11, Volume: 52, Issue:6

    The authors conducted an in vitro investigation of the role of Ca(2+)-dependent signaling in vascular endothelial growth factor (VEGF)-induced angiogenesis in the retina.. Bovine retinal endothelial cells (BRECs) were stimulated with VEGF in the presence or absence of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM; intracellular Ca(2+) chelator), U73122 (phospholipase C (PLC) inhibitor), xestospongin C (Xe-C), and 2-aminoethoxydiphenyl borate (2APB) (inhibitors of inositol-1,4,5 triphosphate (IP(3)) signaling). Intracellular Ca(2+) concentration ([Ca(2+)](i)) was estimated using fura-2 Ca(2+) microfluorometry, Akt phosphorylation quantified by Western blot analysis, and angiogenic responses assessed using cell migration, proliferation, tubulogenesis, and sprout formation assays. The effects of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93 were also evaluated on VEGF-induced Akt signaling and angiogenic activity.. Stimulation of BRECs with 25 ng/mL VEGF induced a biphasic increase in [Ca(2+)](i), with an initial transient peak followed by a sustained plateau phase. VEGF-induced [Ca(2+)](i) increases were almost completely abolished by pretreating the cells with BAPTA-AM, U73122, Xe-C, or 2APB. These agents also inhibited VEGF-induced phosphorylation of Akt, cell migration, proliferation, tubulogenesis, and sprouting angiogenesis. KN93 was similarly effective at blocking the VEGF-induced activation of Akt and angiogenic responses.. VEGF increases [Ca(2+)](i) in BRECs through activation of the PLC-IP(3) signal transduction pathway. VEGF-induced phosphorylation of the proangiogenic protein Akt is critically dependent on this increase in [Ca(2+)](i) and the subsequent activation of CaMKII. Pharmacologic inhibition of Ca(2+)-mediated signaling in retinal endothelial cells blocks VEGF-induced angiogenic responses. These results suggest that the PLC/IP(3)/Ca(2+)/CaMKII signaling pathway may be a rational target for the treatment of angiogenesis-related disorders of the eye.

    Topics: Animals; Blotting, Western; Boron Compounds; Calcium; Calcium Signaling; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Cattle; Cell Movement; Cell Proliferation; Egtazic Acid; Endothelium, Vascular; Enzyme Inhibitors; Enzyme-Linked Immunosorbent Assay; Estrenes; Inositol 1,4,5-Trisphosphate; Macrocyclic Compounds; Neovascularization, Physiologic; Oxazoles; Phosphorylation; Proto-Oncogene Proteins c-akt; Pyrrolidinones; Retinal Vessels; Type C Phospholipases; Vascular Endothelial Growth Factor A

2011
Essential role for calcium waves in migration of human vascular smooth muscle cells.
    American journal of physiology. Heart and circulatory physiology, 2011, Volume: 301, Issue:2

    Vascular smooth muscle cell (SMC) migration is characterized by extension of the lamellipodia at the leading edge, lamellipodial attachment to substrate, and release of the rear (uropod) of the cell, all of which enable forward movement. However, little is known regarding the role of intracellular cytosolic Ca(2+) concentration ([Ca(2+)](i)) in coordinating these distinct activities of migrating SMCs. The objective of our study was to determine whether regional changes of Ca(2+) orchestrate the migratory cycle in human vascular SMCs. We carried out Ca(2+) imaging using digital fluorescence microscopy of fura-2 loaded human smooth muscle cells. We found that motile SMCs exhibited Ca(2+) waves that characteristically swept from the rear of polarized cells toward the leading edge. Ca(2+) waves were less evident in nonpolarized, stationary cells, although acute stimulation of these SMCs with the agonists platelet-derived growth factor-BB or histamine could elicit transient rise of [Ca(2+)](i). To investigate a role for Ca(2+) waves in the migratory cycle, we loaded cells with the Ca(2+) chelator BAPTA, which abolished Ca(2+) waves and significantly reduced retraction, supporting a causal role for Ca(2+) in initiation of retraction. However, lamellipod motility was still evident in BAPTA-loaded cells. The incidence of Ca(2+) oscillations was reduced when Ca(2+) release from intracellular stores was disrupted with the sarcoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin or by treatment with the inositol 1,4,5-trisphosphate receptor blocker 2-aminoethoxy-diphenyl borate or xestospongin C, implicating Ca(2+) stores in generation of waves. We conclude that Ca(2+) waves are essential for migration of human vascular SMCs and can encode cell polarity.

    Topics: Analysis of Variance; Becaplermin; Boron Compounds; Calcium Signaling; Cell Movement; Cell Polarity; Cells, Cultured; Chelating Agents; Egtazic Acid; Enzyme Inhibitors; Histamine; Humans; Inositol 1,4,5-Trisphosphate Receptors; Macrocyclic Compounds; Microscopy, Fluorescence; Microscopy, Video; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Oxazoles; Platelet-Derived Growth Factor; Proto-Oncogene Proteins c-sis; Pseudopodia; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Thapsigargin; Time Factors

2011
Frequent calcium oscillations lead to NFAT activation in human immature dendritic cells.
    The Journal of biological chemistry, 2010, May-21, Volume: 285, Issue:21

    Spontaneous Ca(2+) oscillations have been observed in a number of excitable and non-excitable cells, but in most cases their biological role remains elusive. In the present study we demonstrate that spontaneous Ca(2+) oscillations occur in immature human monocyte-derived dendritic cells but not in dendritic cells stimulated to undergo maturation with lipopolysaccharide or other toll like-receptor agonists. We investigated the mechanism and role of spontaneous Ca(2+) oscillations in immature dendritic cells and found that they are mediated by the inositol 1,4,5-trisphosphate receptor as they were blocked by pretreatment of cells with the inositol 1,4,5-trisphosphate receptor antagonist Xestospongin C and 2-aminoethoxydiphenylborate. A component of the Ca(2+) signal is also due to influx from the extracellular environment and may be involved in maintaining the level of the intracellular Ca(2+) stores. As to their biological role, our results indicate that they are intimately linked to the "immature" phenotype and are associated with the translocation of the transcription factor NFAT into the nucleus. In fact, once the Ca(2+) oscillations are blocked with 2-aminoethoxydiphenylborate or by treating the cells with lipopolysaccharide, NFAT remains cytoplasmic. The results presented in this report provide novel insights into the physiology of monocyte-derived dendritic cells and into the mechanisms involved in maintaining the cells in the immature stage.

    Topics: Active Transport, Cell Nucleus; Biological Clocks; Boron Compounds; Calcium; Cell Nucleus; Cells, Cultured; Dendritic Cells; Humans; Inositol 1,4,5-Trisphosphate Receptors; Lipopolysaccharides; Macrocyclic Compounds; Monocytes; NFATC Transcription Factors; Oxazoles; Toll-Like Receptors

2010
Calcium release via activation of presynaptic IP3 receptors contributes to kainate-induced IPSC facilitation in rat neocortex.
    Neuropharmacology, 2008, Volume: 55, Issue:1

    We examined the mechanisms of kainate (KA) induced modulation of GABA release in rat prefrontal cortex. Pharmacologically isolated IPSCs were recorded from visually identified layer II/III pyramidal cells using whole-cell patch clamp techniques. KA produced an increase in evoked IPSC amplitude at low nanomolar concentrations (100-500 nM). The frequency but not the amplitude of miniature (m) IPSCs was also increased. The GluR5 subunit selective agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA) caused an increase in mIPSC frequency whereas (3S,4aR,6S,8aR)-6-(4-carboxyphenyl)methyl-1,2,3,4,4a,5,6,7,8,8a-decahydroisoquinoline-3-carboxylic acid (LY382884), a selective GluR5 subunit antagonist, inhibited this facilitation. Philanthotoxin-433 (PhTx) blocked the effect of KA, indicating involvement of Ca(2+)-permeable GluR5 receptors. No IPSC facilitation was seen when Ca(2+) was omitted from the bathing solution. Facilitation was observed when slices were preincubated in ruthenium red or high concentrations of ryanodine, but was inhibited with application of thapsigargin. The IP3 receptor (IP3R) antagonists diphenylboric acid 2-amino-ethyl ester (2-APB) (15 microM) and Xestospongin C (XeC) blocked IPSC facilitation. These results show that activation of KA receptors (KARs) on GABAergic nerve terminals results is linked to intracellular Ca(2+) release via activation of IP3, but not ryanodine, receptors. This represents a new mechanism of presynaptic modulation whereby Ca(2+) entry through Ca(2+)-permeable GluR5 subunit containing KARs activates IP3Rs receptors leading to an increase in GABA release.

    Topics: Animals; Boron Compounds; Calcium; Dose-Response Relationship, Drug; Drug Interactions; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; In Vitro Techniques; Inhibitory Postsynaptic Potentials; Inositol 1,4,5-Trisphosphate Receptors; Kainic Acid; Macrocyclic Compounds; Neocortex; Neurons; Nicotinic Antagonists; Oxazoles; Patch-Clamp Techniques; Polyamines; Presynaptic Terminals; Rats

2008
Type 1 inositol 1,4,5-trisphosphate receptors mediate UTP-induced cation currents, Ca2+ signals, and vasoconstriction in cerebral arteries.
    American journal of physiology. Cell physiology, 2008, Volume: 295, Issue:5

    Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) regulate diverse physiological functions, including contraction and proliferation. There are three IP(3)R isoforms, but their functional significance in arterial smooth muscle cells is unclear. Here, we investigated relative expression and physiological functions of IP(3)R isoforms in cerebral artery smooth muscle cells. We show that 2-aminoethoxydiphenyl borate and xestospongin C, membrane-permeant IP(3)R blockers, reduced Ca(2+) wave activation and global intracellular Ca(2+) ([Ca(2+)](i)) elevation stimulated by UTP, a phospholipase C-coupled purinergic receptor agonist. Quantitative PCR, Western blotting, and immunofluorescence indicated that all three IP(3)R isoforms were expressed in acutely isolated cerebral artery smooth muscle cells, with IP(3)R1 being the most abundant isoform at 82% of total IP(3)R message. IP(3)R1 knockdown with short hairpin RNA (shRNA) did not alter baseline Ca(2+) wave frequency and global [Ca(2+)](i) but abolished UTP-induced Ca(2+) wave activation and reduced the UTP-induced global [Ca(2+)](i) elevation by approximately 61%. Antibodies targeting IP(3)R1 and IP(3)R1 knockdown reduced UTP-induced nonselective cation current (I(cat)) activation. IP(3)R1 knockdown also reduced UTP-induced vasoconstriction in pressurized arteries with both intact and depleted sarcoplasmic reticulum (SR) Ca(2+) by approximately 45%. These data indicate that IP(3)R1 is the predominant IP(3)R isoform expressed in rat cerebral artery smooth muscle cells. IP(3)R1 stimulation contributes to UTP-induced I(cat) activation, Ca(2+) wave generation, global [Ca(2+)](i) elevation, and vasoconstriction. In addition, IP(3)R1 activation constricts cerebral arteries in the absence of SR Ca(2+) release by stimulating plasma membrane I(cat).

    Topics: Animals; Boron Compounds; Calcium Signaling; Cations; Cell Membrane; Cerebral Arteries; In Vitro Techniques; Inositol 1,4,5-Trisphosphate Receptors; Macrocyclic Compounds; Muscle, Smooth, Vascular; Oxazoles; Protein Isoforms; Rats; Rats, Sprague-Dawley; RNA Interference; RNA, Messenger; RNA, Small Interfering; Sarcoplasmic Reticulum; Uridine Triphosphate; Vasoconstriction

2008
Sub-plasmalemmal [Ca2+]i upstroke in myocytes of the guinea-pig small intestine evoked by muscarinic stimulation: IP3R-mediated Ca2+ release induced by voltage-gated Ca2+ entry.
    Cell calcium, 2008, Volume: 43, Issue:2

    Membrane depolarization triggers Ca(2+) release from the sarcoplasmic reticulum (SR) in skeletal muscles via direct interaction between the voltage-gated L-type Ca(2+) channels (the dihydropyridine receptors; VGCCs) and ryanodine receptors (RyRs), while in cardiac muscles Ca(2+) entry through VGCCs triggers RyR-mediated Ca(2+) release via a Ca(2+)-induced Ca(2+) release (CICR) mechanism. Here we demonstrate that in phasic smooth muscle of the guinea-pig small intestine, excitation evoked by muscarinic receptor activation triggers an abrupt Ca(2+) release from sub-plasmalemmal (sub-PM) SR elements enriched with inositol 1,4,5-trisphosphate receptors (IP(3)Rs) and poor in RyRs. This was followed by a lesser rise, or oscillations in [Ca(2+)](i). The initial abrupt sub-PM [Ca(2+)](i) upstroke was all but abolished by block of VGCCs (by 5 microM nicardipine), depletion of intracellular Ca(2+) stores (with 10 microM cyclopiazonic acid) or inhibition of IP(3)Rs (by 2 microM xestospongin C or 30 microM 2-APB), but was not affected by block of RyRs (by 50-100 microM tetracaine or 100 microM ryanodine). Inhibition of either IP(3)Rs or RyRs attenuated phasic muscarinic contraction by 73%. Thus, in contrast to cardiac muscles, excitation-contraction coupling in this phasic visceral smooth muscle occurs by Ca(2+) entry through VGCCs which evokes an initial IP(3)R-mediated Ca(2+) release activated via a CICR mechanism.

    Topics: Animals; Boron Compounds; Calcium; Calcium Signaling; Carbachol; Cell Membrane; Evoked Potentials; Guinea Pigs; Ileum; Inositol 1,4,5-Trisphosphate Receptors; Isometric Contraction; Macrocyclic Compounds; Male; Myocytes, Smooth Muscle; Nicardipine; Oxazoles; Receptors, Muscarinic; Ryanodine Receptor Calcium Release Channel; Tetracaine

2008
Blockade of IP3-mediated SK channel signaling in the rat medial prefrontal cortex improves spatial working memory.
    Learning & memory (Cold Spring Harbor, N.Y.), 2008, Volume: 15, Issue:3

    Planning and directing thought and behavior require the working memory (WM) functions of prefrontal cortex. WM is compromised by stress, which activates phosphatidylinositol (PI)-mediated IP3-PKC intracellular signaling. PKC overactivation impairs WM operations and in vitro studies indicate that IP3 receptor (IP3R)-evoked calcium release results in SK channel-dependent hyperpolarization of prefrontal neurons. However, the effects of IP3R signaling on prefrontal function have not been investigated. The present findings demonstrate that blockade of IP3R or SK channels in the prefrontal cortex enhances WM performance in rats, suggesting that both arms of the PI cascade influence prefrontal cognitive function.

    Topics: Animals; Apamin; Boron Compounds; Injections; Inositol 1,4,5-Trisphosphate Receptors; Macrocyclic Compounds; Male; Maze Learning; Memory; Oxazoles; Prefrontal Cortex; Rats; Rats, Sprague-Dawley; Signal Transduction; Small-Conductance Calcium-Activated Potassium Channels

2008
Oxygen-regulated protein-150 prevents calcium homeostasis deregulation and apoptosis induced by oxidized LDL in vascular cells.
    Cell death and differentiation, 2008, Volume: 15, Issue:8

    Oxidized LDLs (oxLDLs) induce apoptosis, which contributes to the pathogenesis of atherosclerosis. The 150 kDa oxygen-regulated protein (ORP150), an endoplasmic reticulum (ER)-resident chaperone, is upregulated by hypoxia and prevents ischemia-induced cell death. The aim of this work was to investigate whether and how ORP150 can prevent apoptosis induced by oxLDLs in vascular cells. OxLDLs induced ORP150 expression in the ER of human microvascular endothelial cell line (HMEC-1). ORP150 expression was blocked by antioxidants, by the permeant calcium chelator BAPTA-AM, and by inhibitors of the inositol-1,4,5 trisphosphate (IP3) receptors, 2-aminoethyl diphenylborinate (2-APB) and xestospongin C. ORP150 silencing by siRNA-enhanced oxLDL-induced apoptosis, while forced ORP150 expression increased the resistance of cells via an inhibition of the oxLDL-induced calcium rise, and of subsequent calpain activation, cytochrome c release, caspase 3 activation and apoptosis. A similar protective effect was achieved by BAPTA-AM, 2-APB and xestospongin C. Altogether, these data indicate that (i)ORP150 inhibits oxLDL-induced apoptosis by blocking calcium signaling and subsequent apoptosis, (ii)calcium released from ER stores through IP3 channels is involved in the oxLDL-induced calcium rise and apoptosis, and is inhibited by ORP150. Finally, ORP150 is expressed in advanced atherosclerotic lesions, where it may locally participate to reduce the apoptotic effect of oxLDLs and the subsequent risk of plaque rupture.

    Topics: Antioxidants; Apoptosis; Atherosclerosis; Boron Compounds; Calcium; Calcium Signaling; Carotid Artery Diseases; Cell Line; Chelating Agents; Egtazic Acid; Endoplasmic Reticulum; Endothelial Cells; Homeostasis; HSP70 Heat-Shock Proteins; Humans; Lipoproteins, LDL; Macrocyclic Compounds; Oxazoles; Proteins; RNA Interference

2008
Two distinct signaling pathways for regulation of spontaneous local Ca2+ release by phospholipase C in airway smooth muscle cells.
    Pflugers Archiv : European journal of physiology, 2007, Volume: 453, Issue:4

    Spontaneous local Ca(2+) release events have been observed in airway smooth muscle cells (SMCs), but the underlying mechanisms are largely unknown. Considering that each type of SMCs may use its own mechanisms to regulate local Ca(2+) release events, we sought to investigate the signaling pathway for spontaneous local Ca(2+) release events in freshly isolated mouse airway SMCs using a laser scanning confocal microscope. Application of ryanodine to block ryanodine receptors (RyRs) abolished spontaneous local Ca(2+) release events, indicating that these events are RyR-mediated Ca(2+) sparks. Inhibition of inositol 1,4,5-triphosphate receptors (IP(3)Rs) by 2-aminoethoxydiphenyl-borate (2-APB) or xestospongin-C significantly blocked the activity of Ca(2+) sparks. Under patch clamp conditions, dialysis of IP(3) to activate IP(3)Rs increased the activity of local Ca(2+) events in control cells but had no effect in ryanodine-pretreated cells. The RyR agonist caffeine augmented the frequency of Ca(2+) sparks in cells pretreated with and without 2-APB or xestospongin-C. The specific phospholipase C (PLC) blocker U73122 decreased the activity of Ca(2+) sparks and prevented xestospongin-C from producing the inhibitory effect. The protein kinase C (PKC) activator 1-oleoyl-2-acetyl-glycerol or phorbol-12-myristate-13-acetate inhibited Ca(2+) sparks, whereas the PKC inhibitor chelerythrine, PKCvarepsilon inhibitory peptide, or PKCvarepsilon gene knockout produced an opposite effect. Collectively, our data suggest that the basal activation of PLC regulates the activity of RyR-mediated, spontaneous Ca(2+) sparks in airway SMCs through two distinct signaling pathways: a positive IP(3)-IP(3)R pathway and a negative diacylglycerol-PKCvarepsilon pathway.

    Topics: Alkaloids; Animals; Benzophenanthridines; Boron Compounds; Caffeine; Calcium; Cells, Cultured; Diglycerides; Estrenes; Inositol 1,4,5-Trisphosphate; Inositol 1,4,5-Trisphosphate Receptors; Macrocyclic Compounds; Male; Mice; Myocytes, Smooth Muscle; Oxazoles; Pyrrolidinones; Respiratory System; Ryanodine; Ryanodine Receptor Calcium Release Channel; Sarcoplasmic Reticulum; Signal Transduction; Type C Phospholipases

2007
Role of InsP3 and ryanodine receptors in the activation of capacitative Ca2+ entry by store depletion or hypoxia in canine pulmonary arterial smooth muscle cells.
    British journal of pharmacology, 2007, Volume: 152, Issue:1

    Experiments were performed to determine if capacitative Ca(2+) entry (CCE) in canine pulmonary arterial smooth muscle cells (PASMCs) is dependent on InsP(3) receptors or ryanodine receptors as induction of CCE is dependent on simultaneous depletion of the functionally separate InsP(3)- and ryanodine-sensitive sarcoplasmic reticulum (SR) Ca(2+) stores in these cells.. Myocytes were isolated from canine pulmonary arteries using enzymatic procedures and were used within 8 h of preparation. Measurements of cytosolic Ca(2+) were made by imaging fura-2 loaded individual myocytes that were perfused with physiological buffered saline solution with or without Ca(2+).. Treating myocytes with 10 microM cyclopiazonic acid (CPA), removing extracellular Ca(2+), and briefly applying 10 mM caffeine and 10 microM 5-hydroxytryptamine (5-HT) depleted SR Ca(2+) stores. Extracellular Ca(2+) reintroduction caused cytosolic [Ca(2+)] to elevate above baseline signifying CCE. The InsP(3) receptor inhibitors 2-aminobiphenylborate (50-75 microM; 2-APB) and xestospongin-C (20 microM; XeC) abolished CCE. Yet, CCE was unaffected by 10 microM or 300 microM ryanodine or 10 microM dantrolene, which modify ryanodine receptor activity. Higher dantrolene concentrations (50 microM), however, can inhibit both ryanodine receptors and InsP(3) receptors, did reduce CCE. In contrast, CCE activated by hypoxia was unaffected by XeC (20 microM).. The results provide evidence that CCE activated by depletion of both InsP(3) and ryanodine SR Ca(2+) stores in canine PASMCs is dependent on functional InsP(3) receptors, whereas the activation of CCE by hypoxia appears to be independent of functional InsP(3) receptors.

    Topics: Animals; Boron Compounds; Caffeine; Calcium; Calcium Signaling; Calcium-Transporting ATPases; Cell Hypoxia; Cytosol; Dantrolene; Dogs; Enzyme Inhibitors; In Vitro Techniques; Indoles; Inositol 1,4,5-Trisphosphate Receptors; Macrocyclic Compounds; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Oxazoles; Pulmonary Artery; Ryanodine; Ryanodine Receptor Calcium Release Channel; Sarcoplasmic Reticulum; Serotonin; Time Factors

2007
Role of inositol 1,4,5-trisphosphate receptors in alpha1-adrenergic receptor-induced cardiomyocyte hypertrophy.
    Acta pharmacologica Sinica, 2006, Volume: 27, Issue:7

    Intracellular Ca2+ plays pivotal roles in diverse cellular functions, including gene transcription that underlies cardiac remodeling during stress responses. However, the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) in the mediation of cardiac intracellular Ca2+ and hypertrophic growth remains elusive. Prior work with neonatal rat ventricular myocytes suggests that activation of IP3Rs may be linked to a1 adrenergic receptor (alpha1AR) increased stereotyped Ca2+ spark occurrence and global Ca2+ oscillations. Thus, we hypothesized that Ca2+ release through IP3Rs was necessary for alpha1AR-stimulated cardiac hypertrophy.. We used myoinositol 1,4,5-trisphosphate hexakis (butyryloxymethyl) ester (IP3BM), a membrane-permeant ester of IP3, to activate IP3Rs directly, and Fluo 4/AM to measure intracellular Ca2+ signaling.. IP3BM (10 micromol x L(-1)) mimicked the effects of phenylephrine, a selective agonist of alpha1AR, in increments in local Ca2+ spark release (especially in the perinuclear area) and global Ca2+ transient frequencies. More importantly, IP3R inhibitors, 2-aminoethoxydiphenyl borate and Xestospongin C, abolished the IP3BM-induced Ca2+ responses, and significantly suppressed alpha1AR-induced cardiomyocyte hypertrophy assayed by cell size, [3H] leucine incorporation and atrial natriuretic factor gene expression, during sustained (48 h) phenylephrine stimulation.. These results, therefore, provide cellular mechanisms that link IP3R signaling to alpha1AR-stimulated gene expression and cardiomyocyte hypertrophy.

    Topics: Adrenergic alpha-1 Receptor Agonists; Animals; Animals, Newborn; Atrial Natriuretic Factor; Boron Compounds; Calcium; Calcium Signaling; Cells, Cultured; Heart Ventricles; Hypertrophy; Inositol 1,4,5-Trisphosphate Receptors; Leucine; Macrocyclic Compounds; Myocytes, Cardiac; Oxazoles; Phenylephrine; Rats; Rats, Sprague-Dawley; RNA, Messenger; Signal Transduction

2006