muramidase and tocophersolan

muramidase has been researched along with tocophersolan* in 1 studies

Other Studies

1 other study(ies) available for muramidase and tocophersolan

ArticleYear
Evaluation of protein stability and in vitro permeation of lyophilized polysaccharides-based microparticles for intranasal protein delivery.
    International journal of pharmaceutics, 2011, Sep-15, Volume: 416, Issue:1

    Biocompatible microparticles prepared by lyophilization were developed for intranasal protein delivery. To test for the feasibility of this formulation, stability of the incorporated protein and enhancement of in vitro permeation across the nasal epithelium were evaluated. Lyophilization was processed with hydroxypropylmethylcellulose (HPMC) or water soluble chitosan (WCS) as biocompatible polymers, hydroxypropyl-β-cyclodextrin (HP-β-CD) and d-alpha-tocopheryl poly(ethylene glycol 1000) succinate (TPGS 1000) as permeation enhancers, sugars as cryoprotectants and lysozyme as the model protein. As a result, microparticles ranging from 6 to 12μm were developed where the maintenance of the protein conformation was verified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), circular dichroism and fluorescence intensity detection. Moreover, in vitro bioassay showed that the lysozyme activity was preserved during the preparation process while exhibiting less cytotoxicity in primary human nasal epithelial (HNE) cells. Results of the in vitro release study revealed slower release rate in these microparticles compared to that of the lysozyme itself. On the other hand, the in vitro permeation study exhibited a 9-fold increase in absorption of lysozyme when prepared in lyophilized microparticles with HPMC, HP-β-CD and TPGS 1000 (F4-2). These microparticles could serve as efficient intranasal delivery systems for therapeutic proteins.

    Topics: 2-Hydroxypropyl-beta-cyclodextrin; Absorption; Administration, Intranasal; beta-Cyclodextrins; Chitosan; Freeze Drying; Humans; Hypromellose Derivatives; Methylcellulose; Muramidase; Nasal Mucosa; Particle Size; Polyethylene Glycols; Powders; Primary Cell Culture; Protein Stability; Succinates; Vitamin E

2011