muramidase and silicon-nitride

muramidase has been researched along with silicon-nitride* in 2 studies

Other Studies

2 other study(ies) available for muramidase and silicon-nitride

ArticleYear
Influence of Adsorption on Proteins and Amyloid Detection by Silicon Nitride Nanopore.
    Langmuir : the ACS journal of surfaces and colloids, 2016, 09-06, Volume: 32, Issue:35

    For the past 2 decades, emerging single-nanopore technologies have opened the route to multiple sensing applications. Besides DNA sensing, the identification of proteins and amyloids is a promising field for early diagnosis. However, the influence of the interactions between the nanopore surface and proteins should be taken into account. In this work, we have selected three proteins (avidin, lysozyme, and IgG) that exhibit different affinities with the SiNx surface, and we have also examined lysozyme amyloid. Our results show that the piranha treatment of SiNx significantly decreases protein adsorption. Moreover, we have successfully detected all proteins (pore diameter 17 nm) and shown the possibility of discriminating between denatured lysozyme and its amyloid. For all proteins, the capture rates are lower than expected, and we evidence that they are correlated with the affinity of proteins to the surface. Our result confirms that proteins interacting only with the nanopore surface wall stay long enough to be detected. For lysozyme amyloid, we show that the use of the nanopore is suitable for determining the number of monomer units even if only the proteins interacting with the nanopore are detected.

    Topics: Adsorption; Amyloid; Avidin; Electrochemical Techniques; Immunoglobulin G; Kinetics; Muramidase; Nanopores; Silicon Compounds; Solutions

2016
A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions.
    Acta crystallographica. Section D, Biological crystallography, 2015, Volume: 71, Issue:Pt 10

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10-15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.

    Topics: Animals; Chickens; Crystallization; Crystallography, X-Ray; Equipment Design; Hydrophobic and Hydrophilic Interactions; Light; Muramidase; Silicon Compounds

2015