muramidase has been researched along with saponite* in 2 studies
2 other study(ies) available for muramidase and saponite
Article | Year |
---|---|
Interaction of biological molecules with clay minerals: a combined spectroscopic and sorption study of lysozyme on saponite.
The interaction of hen egg white lysozyme (HEWL) with Na- and Cs-exchanged saponite was investigated using sorption, structural, and spectroscopic methods as a model system to study clay-protein interactions. HEWL sorption to Na- and Cs-saponite was determined using the bicinchoninic acid (BCA) assay, thermogravimetric analysis, and C and N analysis. For Na-saponite, the TGA and elemental analysis-derived sorption maximum was 600 mg/g corresponding to a surface coverage of 0.85 ng/mm(2) with HEWL occupying 526 m(2)/g based on a cross-sectional area of 13.5 nm(2)/molecule. HEWL sorption on Na-saponite was accompanied by the release of 9.5 Na(+) ions for every molecule of HEWL sorbed consistent with an ion exchange mechanism between the positively charged HEWL (IEP 11) and the negatively charged saponite surface. The d-spacing of the HEWL-Na-saponite complex increased to a value of 4.4 nm consistent with the crystallographic dimensions of HEWL of 3 × 3 × 4.5 nm. In the case of Cs-saponite, there was no evidence of interlayer sorption; however, sorption of HEWL to the "external" surface of Cs-saponite showed a high affinity isotherm. FTIR and Raman analysis of the amide I region of the HEWL-saponite films prepared from water and D(2)O showed little perturbation to the secondary structure of the protein. The overall hydrophilic nature of the HEWL-Na-saponite complex was determined by water vapor sorption measurements. The clay retained its hydrophilic character with a water content of 18% at high humidity corresponding to 240 H(2)O molecules per molecule of HEWL. Topics: Aluminum Silicates; Clay; Minerals; Muramidase; Thermogravimetry | 2012 |
Heterogeneous nucleation of protein crystals on fluorinated layered silicate.
Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface. Topics: Adsorption; Aluminum Silicates; Animals; Cattle; Chemical Precipitation; Chickens; Crystallization; Halogenation; Humans; Models, Chemical; Muramidase; Proteins; Silicates; Time Factors | 2011 |