muramidase and iminodiacetic-acid

muramidase has been researched along with iminodiacetic-acid* in 8 studies

Other Studies

8 other study(ies) available for muramidase and iminodiacetic-acid

ArticleYear
Metal affinity-carboxymethyl cellulose functionalized magnetic graphene composite for highly selective isolation of histidine-rich proteins.
    Talanta, 2019, Apr-01, Volume: 195

    A metal affinity-carboxymethyl cellulose functionalized magnetic graphene, namely MGCI-Cu composite, was prepared by successive modifications of graphene oxide nanosheets with magnetic nanoparticles, carboxymethyl cellulose (CMC), iminodiacetic acid (IDA) and then chelated with copper ions. The successful modifications of the graphene surface were demonstrated by various characterizations, and a high density of 6.17 μmol m

    Topics: Adsorption; Carboxymethylcellulose Sodium; Copper; Escherichia coli; Graphite; Hemoglobins; Humans; Imino Acids; Magnetite Nanoparticles; Muramidase; Myoglobin; Proteins; Recombinant Proteins; Serum Albumin, Bovine

2019
Facile synthesis of copper(II)-decorated functional mesoporous material for specific adsorption of histidine-rich proteins.
    Talanta, 2018, Jan-01, Volume: 176

    The Cu

    Topics: Adsorption; Cell Line, Tumor; Copper; Hemoglobins; Horseradish Peroxidase; Humans; Imino Acids; Muramidase; Myoglobin; Organosilicon Compounds; Polymers; Serum Albumin, Bovine

2018
Bifunctionality of Iminodiacetic Acid-Modified Lysozyme on Inhibiting Zn
    Langmuir : the ACS journal of surfaces and colloids, 2018, 05-01, Volume: 34, Issue:17

    Aggregation of amyloid β-proteins (Aβ) mediated by metal ions such as Zn

    Topics: Amyloid beta-Peptides; Cell Line; Cell Survival; Humans; Imino Acids; Muramidase; Protein Aggregation, Pathological; Zinc

2018
Preparation of core-shell structure Fe3 O4 @SiO2 superparamagnetic microspheres immoblized with iminodiacetic acid as immobilized metal ion affinity adsorbents for His-tag protein purification.
    Biomedical chromatography : BMC, 2016, Volume: 30, Issue:4

    The core-shell structure Fe3 O4 /SiO2 magnetic microspheres were prepared by a sol-gel method, and immobiled with iminodiacetic acid (IDA) as metal ion affinity ligands for protein adsorption. The size, morphology, magnetic properties and surface modification of magnetic silica nanospheres were characterized by various modern analytical instruments. It was shown that the magnetic silica nanospheres exhibited superparamagnetism with saturation magnetization values of up to 58.1 emu/g. Three divalent metal ions, Cu(2+) , Ni(2+) and Zn(2+) , were chelated on the Fe3 O4 @SiO2 -IDA magnetic microspheres to adsorb lysozyme. The results indicated that Ni(2+) -chelating magnetic microspheres had the maximum adsorption capacity for lysozyme of 51.0 mg/g, adsorption equilibrium could be achieved within 60 min and the adsorbed protein could be easily eluted. Furthermore, the synthesized Fe3 O4 @SiO2 -IDA-Ni(2+) magnetic microspheres were successfully applied for selective enrichment lysozyme from egg white and His-tag recombinant Homer 1a from the inclusion extraction expressed in Escherichia coli. The result indicated that the magnetic microspheres showed unique characteristics of high selective separation behavior of protein mixture, low nonspecific adsorption, and easy handling. This demonstrates that the magnetic silica microspheres can be used efficiently in protein separation or purification and show great potential in the pretreatment of the biological sample.

    Topics: Adsorption; Animals; Carrier Proteins; Chickens; Chromatography, Affinity; Histidine; Homer Scaffolding Proteins; Imino Acids; Magnetite Nanoparticles; Muramidase; Recombinant Proteins; Silicon Dioxide

2016
Novel bis(5-methyltetrazolium)amine ligand-bonded stationary phase with reduced leakage of metal ions in immobilized metal affinity chromatography of proteins.
    Analytical and bioanalytical chemistry, 2016, Volume: 408, Issue:27

    Immobilized metal affinity chromatography (IMAC) has been widely used for the specific separation of biopolymers. However, leakage of metal ions from IMAC adsorbents is of concern in IMAC. In this study, we designed a novel tridenate bis(5-methyltetrazolium)amine (BMTA) to reduce the leakage of metal ions by improving the affinity to immobilized metal ions. The ligand was bonded onto silica via three-step reaction to prepare a high-performance IMAC stationary phase. The chromatographic behaviors of ribonuclease A, cytochrome c, and lysozyme on the Cu(II)-, Ni(II)-, and Zn(II)-chelated stationary phase were investigated with respect to pH effect and elution with an imidazole gradient. The retention times of these three proteins increased by increasing the pH of the mobile phase but decreased by increasing the concentration of the competitive displacer. The retaining strength of the three proteins on the chelated stationary phase were in the order Cu(II) > Ni(II) > Zn(II). The behavior of these three proteins was consistent with the properties of a typical IMAC. The BMTA ligand exhibited a much stronger affinity for Cu(II) and Ni(II) than iminodiacetic acid (IDA), which is often regarded as a standard tridentate IMAC ligand. Quantum mechanical calculations at the B3LYP/6-31G level were used to image the coordination mode of the protein-metal ions-BMTA complex. In addition, a fused histidine-tagged cecropin b-human epidermal growth factor (CB-EGF) from Escherichia coli crude extract was purified by the Ni(II)-chelated stationary phase, and the purity of the CB-EGF was determined to be at least 90 %. These results suggest that the BMTA ligand may have potential applications in the preparation of therapeutics. Graphical Abstract A novel ligand of tridenate bis(5-methyltetrazolium)amine (BMTA) was designed to reduce the leakage of metal ions from the column in immobolized metal affinity chromatography (IMAC).

    Topics: Adsorption; Chromatography, Affinity; Copper; Cytochromes c; Epidermal Growth Factor; Humans; Hydrogen-Ion Concentration; Imidazoles; Imino Acids; Muramidase; Nickel; Quantum Theory; Ribonuclease, Pancreatic; Silicon Dioxide; Tetrazolium Salts; Zinc

2016
Novel voltammetric and impedimetric sensor for femtomolar determination of lysozyme based on metal-chelate affinity immobilized onto gold nanoparticles.
    Biosensors & bioelectronics, 2015, Dec-15, Volume: 74

    In this study, we reported iminodiacetic acid-copper ion complex (IDA-Cu) immobilized onto gold nanoparticles (GNPs)-modified glassy carbon electrode as a novel electrochemical platform for selective and sensitive determination of lysozyme (Lys). IDA-Cu complex acted as an efficient recognition element capable of capturing Lys molecules. GNPs acts as a substrate to immobilize IDA-Cu coordinative complex and its interaction with Lys leds to a great signal amplification through measuring changes in differential pulse voltammetric (DPV) peak current of [Fe(CN)6](3-/4-) redox probe. Upon the recognition of the Lys to the IDA-Cu, the peak current decreased due to the hindered electron transfer reaction on the electrode surface. Under optimum condition, it was found that the proposed method could detect Lys at wide linear concentration range (0.1 pM to 0.10 mM) with detection limit of 60 fM. Furthermore, electrochemical impedance spectroscopy (EIS) detection of Lys was demonstrated as a simple and rapid alternative analytical technique with detection limit of 80 fM at concentration range up to 0.1mM. In addition, the proposed sensor was satisfactorily applied to the determination of Lys in real samples such as hen egg white. The proposed modified electrode showing the high selectivity, good sensitivity and stability toward Lys detection may hold a great promise in developing other electrochemical sensors based on metal-chelate affinity complexes.

    Topics: Animals; Biosensing Techniques; Chelating Agents; Chickens; Copper; Egg White; Electrochemical Techniques; Electrodes; Equipment Design; Gold; Imino Acids; Limit of Detection; Metal Nanoparticles; Models, Molecular; Muramidase

2015
Protein selectivity in immobilized metal affinity chromatography based on the surface accessibility of aspartic and glutamic acid residues.
    Journal of protein chemistry, 1995, Volume: 14, Issue:6

    The interaction of different species variants of cytochrome c and myoglobin, as well as hen egg white lysozyme, with the hard Lewis metal ions Al3+, Ca2+, Fe3+, and Yb3+ and the borderline metal ion Cu2+, immobilized to iminodiacetic acid (IDA)-Sepharose CL-4B, has been investigated over the range pH 5.5-8.0. With appropriately chosen buffer and metal ion conditions, these proteins can be bound to the immobilized Mn+-IDA adsorbents via negatively charged amino acid residues accessible on the protein surface. For example, tuna heart cytochrome c, which lacks surface-accessible histidine residues, readily bound to the Fe3+-IDA adsorbent, while the other proteins also showed affinity toward immobilized Fe3+-IDA adsorbents when buffers containing 30 mM of imidazole were used. These studies document that protein selectivity can be achieved with hard-metal-ion immobilized metal ion affinity chromatography (IMAC) systems through the interaction of surface-exposed aspartic and glutamic acid residues on the protein with the immobilized Mn+-IDA complex. These investigations have also documented that the so-called soft or borderline immobilized metal ions such as the Cu2+-IDA adsorbent can also interact with surface-accessible aspartic and glutamic acid residues in a protein-dependent manner. A relationship is evident between the number of clustering of the surface-accessible aspartic and glutamic residues and protein selectivity with these IMAC systems. The use of elution buffers which contain organic compound modifiers which replicate the carboxyl group moieties of these amino acids on the surface of proteins is also described.

    Topics: Animals; Aspartic Acid; Buffers; Chickens; Chromatography, Affinity; Cytochrome c Group; Dogs; Female; Glutamic Acid; Horses; Hydrogen-Ion Concentration; Imino Acids; Metals; Muramidase; Myoglobin; Proteins; Sepharose; Sheep; Species Specificity; Surface Properties

1995
Influence of ligand density on the properties of metal-chelate affinity supports.
    Analytical biochemistry, 1993, Volume: 208, Issue:1

    A new procedure has been developed to immobilize iminodiacetic acid (IDA) onto the surface of silica supports, such as LiChrospher Si-1000 and 1.5-microns nonporous silica, for use in high-performance immobilized metal affinity chromatography (HPIMAC) of proteins. This IDA immobilization method has been achieved through the synthesis of a new silylation reagent, 1-(iminodiacetic acid di-tert-butylester)-3-glycidoxy-propyltrimethoxysilane (IDA-silane). Various modified silicas of different ligand densities have been prepared by using mixtures between 1 and 100% of the IDA-silane diluted with the corresponding 3-glycidoxy-propyltrimethoxysilane (GLYMO-silane). Frontal analysis was used with the IDA-Cu(II)-Concanavalin-A and IDA-Cu(II)-lysozyme systems to evaluate the capacity and the association constants for these HPIMAC sorbents. With these metal chelate sorbents the specific binding capacity per unit area increased continuously with the ligand density for the nonporous sorbents but reached a maximum at about 50% of the maximum ligand coverage for the porous sorbents. The association constant for the chelate-protein complex was highest for both concanavalin-A (Con-A) and lysozyme (HEWL) at the highest ligand density and decreased with lower ligand density. These observations have been evaluated in terms of the accessibility of histidine residues on the surface of the two test proteins and their ability to act as binding sites for the copper ions in the coordination complex. The experimental data indicate that both steric and conformational effects result in multiple classes of binding phenomena with Con-A and HEWL at high ligand concentrations. These experimental results provide a useful guideline for the design of silica-based sorbents for application in the HPIMAC of proteins.

    Topics: Adsorption; Chelating Agents; Chromatography, Affinity; Concanavalin A; Copper; Evaluation Studies as Topic; Imino Acids; Ligands; Muramidase; Proteins; Silicon Dioxide

1993