muramidase has been researched along with fucoxanthin* in 2 studies
2 other study(ies) available for muramidase and fucoxanthin
Article | Year |
---|---|
Phycocyanin/lysozyme nanocomplexes to stabilize Pickering emulsions for fucoxanthin encapsulation.
Food-grade Pickering emulsions with plant proteins have attracted increasing interest in recent years. In this work, we report a type of phycocyanin (PC) electrostatic nanocomplex fabricated following a complexation between PC and lysozyme (Lys). The aim was to investigate toward investigating the performance of phycocyanin-Lysozyme (PC-Lys) nanocomplexes in stabilizing Pickering emulsions and protecting fucoxanthin (FX) from degradation. The properties of the PC-Lys nanocomplexes were characterized by Topics: Emulsifying Agents; Emulsions; Muramidase; Phycocyanin | 2023 |
Construction of Fucoxanthin Vector Based on Binding of Whey Protein Isolate and Its Subsequent Complex Coacervation with Lysozyme.
In this study, a novel vector for fucoxanthin (FX) was constructed using the ligand-binding property of whey protein isolate and its subsequent heteroprotein complex coacervation with lysozyme. The results showed that FX could quench the intrinsic fluorescence of the whey protein isolate by a static mechanism, indicating that they could spontaneously form a nanocomplex through non-covalent interactions. Moreover, the structural and electrostatic properties of the resulting whey protein were different from those before the binding of FX, and this could be well explained by molecular dynamics simulation. The size and ΞΆ-potential tests showed that when the whey protein isolate was combined with FX and then coacervated with lysozyme, the heteroprotein ratio and pH, which affect the coacervation process, also changed compared to those of the free whey protein isolate. FT-IR spectroscopy results showed that FX was successfully encapsulated into complex coacervates. In addition, the heteroprotein system exhibited a higher loading efficiency and also provided a better protection for FX in heating, storage, and simulated gastrointestinal environments. Topics: Animals; Biocatalysis; Chickens; Hydrogen-Ion Concentration; Muramidase; Protein Binding; Spectroscopy, Fourier Transform Infrared; Whey Proteins; Xanthophylls | 2019 |