mrs-1220 and 3-7-dimethyl-1-propargylxanthine

mrs-1220 has been researched along with 3-7-dimethyl-1-propargylxanthine* in 2 studies

Other Studies

2 other study(ies) available for mrs-1220 and 3-7-dimethyl-1-propargylxanthine

ArticleYear
Inhibitory responses to exogenous adenosine in murine proximal and distal colon.
    British journal of pharmacology, 2006, Volume: 148, Issue:7

    The aims of the present study were firstly, to characterize pharmacologically the subtypes of P(1) purinoreceptors involved in the inhibitory effects induced by exogenous adenosine in longitudinal smooth muscle of mouse colon, and secondly, to examine differences in the function and distribution of these receptors between proximal and distal colon. Adenosine (100 microM-3 mM) caused a concentration-dependent reduction of the amplitude of spontaneous contractions in the proximal colon, and muscular relaxation in the distal colon. In the proximal colon, adenosine effects were antagonized by a selective A(1) receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 10 nM), but were not modified by 3,7-dimethyl-1-propargylxanthine (DMPX, 10 microM) or by 9-chloro-2-(2-furanyl)-5-((phenylacetyl)amino)- [1,2,4]triazolo[1,5-c]quinazoline (MRS 1220, 0.1 microM), selective A(2) and A(3) receptor antagonists, respectively. In the distal colon, adenosine effects were antagonized by DPCPX, DMPX, and by a selective A(2B) receptor antagonist, 8-[4-[((4-cyanophenyl)carbamoylmethyl)oxy]phenyl]-1,3-di(n-propyl) xanthine (MRS 1754, 10 microM), but not by 8-(3-chlorostyryl)-caffeine (CSC, 10 microM), a selective A(2A) receptor antagonist, or by MRS 1220. Tetrodotoxin (TTX 1 microM), the nitric oxide (NO) synthase inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME, 100 microM), or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (10 microM), an inhibitor of soluble guanylyl cyclase, reduced adenosine effects only in distal colon. In addition, L-NAME induced a further reduction of adenosine relaxation in the presence of DPCPX, but not in the presence of MRS 1754. From these results we conclude that, in the murine proximal colon, adenosine induces inhibitory effects via TTX-insensitive activation of A(1) receptor. In the distal colon, adenosine activates both A(1) and A(2B) receptors, the latter located on enteric inhibitory neurons releasing NO.

    Topics: Adenosine; Animals; Colon; Dose-Response Relationship, Drug; Enzyme Inhibitors; Male; Mice; Mice, Inbred C57BL; Muscle Contraction; Muscle, Smooth; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase Type III; Purinergic P1 Receptor Antagonists; Quinazolines; Receptors, Purinergic P1; Signal Transduction; Theobromine; Triazoles; Xanthines

2006
Adenosine acts as a chemoprotective agent by stimulating G-CSF production: a role for A1 and A3 adenosine receptors.
    Journal of cellular physiology, 2000, Volume: 183, Issue:3

    Adenosine, a ubiquitous nucleoside, is released into the extracellular environment from metabolically active or stressed cells. It binds to cells through specific A1, A(2A), A(2B), and A3 G-protein-associated cell-surface receptors, thus acting as a signal-transduction molecule by regulating the levels of adenylyl cyclase and phospholipase C. In this study, we showed that adenosine stimulates the proliferation of murine bone marrow cells in vitro. Pharmacological studies, using antagonists to the adenosine receptors, revealed that this activity was mediated through the binding of adenosine to its A1 and A3 receptors. This result was further corroborated by showing that the two selective A1 and A3 receptor agonists, N-cyclopentyladenosine (CPA) and 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-be ta-D-ribofuranuronamide (IB-MECA) respectively, induced bone marrow cell proliferation in a manner similar to adenosine. Adenosine's interaction with its A1 and A3 receptors induced G-CSF production, which led to its stimulatory effect on bone marrow cells. These results were confirmed in vivo when we demonstrated that low-dose adenosine (0.25 mg/kg) acted as a chemoprotective agent. When administered after chemotherapy, it restored the number of leukocytes and neutrophils to normal levels, compared with the decline in these parameters after chemotherapy alone. It is suggested that low-dose adenosine, already in clinical use, may also be applied as a chemoprotective agent.

    Topics: Adenosine; Animals; Bone Marrow Cells; Cell Cycle; Cell Division; Cells, Cultured; Cyclophosphamide; Granulocyte Colony-Stimulating Factor; Humans; Leukocytes, Mononuclear; Male; Mice; Mice, Inbred C57BL; Mice, Inbred ICR; Purinergic P1 Receptor Antagonists; Quinazolines; Receptor, Adenosine A3; Receptors, Purinergic P1; Theobromine; Triazoles; Xanthines

2000