mrs-1191 has been researched along with 1-3-dipropyl-8-cyclopentylxanthine* in 7 studies
7 other study(ies) available for mrs-1191 and 1-3-dipropyl-8-cyclopentylxanthine
Article | Year |
---|---|
Frequency facilitation at mossy fiber-CA3 synapses of freely behaving rats contributes to the induction of persistent LTD via an adenosine-A1 receptor-regulated mechanism.
Frequency facilitation (FF), comprising a rapid and multiple-fold increase in the magnitude of evoked field potentials, is elicited by low-frequency stimulation (LFS) at mossy fiber-CA3 synapses. Here, we show that in freely behaving rats, FF reliably occurs in response to 1 and 2Hz but not in response to 0.25-, 0.3-, or 0.5-Hz LFS. Strikingly, prolonged (approximately 600 s) FF was tightly correlated to the induction of long-term depression (LTD) in freely moving animals. Although LFS at 2 Hz elicited unstable FF and unstable LTD, application of LFS at 1 Hz elicited pronounced FF, as well as robust LTD that persisted for over 24 h. This correlation of prolonged FF with LTD was absent at stimulation frequencies that did not induce FF. The adenosine-A1 receptor appears to participate in these effects: Application of adenosine-A1, but not adenosine-A3, receptor antagonists enhanced mossy fiber synaptic transmission and occluded FF. Furthermore, adenosine-A1 receptor antagonism resulted in more stable FF at 1 or 2 Hz and elicited more potent LTD. These data support the fact that FF contributes to the enablement of long-term information storage at mossy fiber-CA3 synapses and that the adenosine-A1 receptor may regulate the thresholds for this process. Topics: Adenosine A1 Receptor Antagonists; Analysis of Variance; Animals; Biophysics; CA3 Region, Hippocampal; Cyclopropanes; Dihydropyridines; Electric Stimulation; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Glycine; Long-Term Synaptic Depression; Male; Mossy Fibers, Hippocampal; Rats; Rats, Wistar; Receptor, Adenosine A1; Statistics as Topic; Time Factors; Valine; Wakefulness; Xanthines; Xylenes | 2010 |
Cardioprotection induced by adenosine A1 receptor agonists in a cardiac cell ischemia model involves cooperative activation of adenosine A2A and A2B receptors by endogenous adenosine.
Extracellular adenosine concentrations increase within the heart during ischemia, and any exogenous adenosine receptor agonists therefore work in the context of significant local agonist concentrations. We evaluated the interactions between A1, A2A, A2B, and A3 receptors in the presence and absence of adenosine deaminase (ADA, which is used to remove endogenous adenosine) in a cardiac cell ischemia model. Simulated ischemia (SI) was induced by incubating H9c2(2-1) cells in SI medium for 12 hours in 100% N2 gas before assessment of necrosis using propidium iodide (5 microM) or apoptosis using AnnexinV-PE flow cytometry. N6-Cyclopentyladenosine (CPA; 10(-7)M) and N6-(3-iodobenzyl) adenosine-5'-N-methyluronamide (IB-MECA; 10(-7)M) reduced the proportion of nonviable cells to 30.87 +/- 2.49% and 35.18 +/- 10.30%, respectively (% of SI group). In the presence of ADA, the protective effect of CPA was reduced (62.82 +/- 3.52% nonviable), whereas the efficacy of IB-MECA was unchanged (35.81 +/- 3.84% nonviable; P < 0.05, n = 3-5, SI vs. SI + ADA). The protective effects of CPA and IB-MECA were abrogated in the presence of their respective antagonists DPCPX (8-cyclopentyl-1,3-dipropylxanthine) and MRS1191 [3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate], whereas A2A and A2B agonists had no significant effect. CPA-mediated protection was abrogated in the presence of both A2A (ZM241385, 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-lamino]ethyl)phenol; 50 nM) and A2B (MRS1754, 8-[4-[((4-cyanophenyl)carbamoylmethyl)oxy]phenyl]-1,3-di(n-propyl)xanthine; 200 nM) antagonists (n = 3-5, P < 0.05). In the absence of endogenous adenosine, significant protection was observed with CPA in presence of CGS21680 (4-[2-[[6-amino-9-(N-ethyl-b-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid) or LUF5834 [2-amino-4-(4-hydroxyphenyl)-6-(1H-imidazol-2-ylmethylsulfanyl)pyridine-3,5-dicarbonitrile] (P < 0.05 vs. SI + ADA + CPA). Apoptosis (14.35 +/- 0.15% of cells in SI + ADA group; P < 0.05 vs. control) was not significantly reduced by CPA or IB-MECA. In conclusion, endogenous adenosine makes a significant contribution to A1 agonist-mediated prevention of necrosis in this SI model by cooperative interactions with both A2A and A2B receptors but does not play a role in A3 agonist-mediated protection. Topics: Acetamides; Adenosine; Adenosine A1 Receptor Agonists; Adenosine A2 Receptor Agonists; Adenosine A2 Receptor Antagonists; Adenosine A3 Receptor Agonists; Adenosine A3 Receptor Antagonists; Aminopyridines; Animals; Apoptosis; Cardiotonic Agents; Cell Line; Cell Survival; Dihydropyridines; Imidazoles; Myocardial Ischemia; Phenethylamines; Purines; Rats; Triazines; Triazoles; Xanthines | 2009 |
Protective roles of adenosine A1, A2A, and A3 receptors in skeletal muscle ischemia and reperfusion injury.
Although adenosine exerts cardio-and vasculoprotective effects, the roles and signaling mechanisms of different adenosine receptors in mediating skeletal muscle protection are not well understood. We used a mouse hindlimb ischemia-reperfusion model to delineate the function of three adenosine receptor subtypes. Adenosine A(3) receptor-selective agonist 2-chloro-N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (Cl-IBMECA; 0.07 mg/kg ip) reduced skeletal muscle injury with a significant decrease in both Evans blue dye staining (5.4 +/- 2.6%, n = 8 mice vs. vehicle-treated 28 +/- 6%, n = 7 mice, P < 0.05) and serum creatine kinase level (1,840 +/- 910 U/l, n = 13 vs. vehicle-treated 12,600 +/- 3,300 U/l, n = 14, P < 0.05), an effect that was selectively blocked by an A(3) receptor antagonist 3-ethyl-5-benzyl-2-methyl-6-phenyl-4-phenylethynyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS-1191; 0.05 mg/kg). The adenosine A(1) receptor agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA; 0.05 mg/kg) also exerted a cytoprotective effect, which was selectively blocked by the A(1) antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 0.2 mg/kg). The adenosine A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS-21680; 0.07 mg/kg)-induced decrease in skeletal muscle injury was selectively blocked by the A(2A) antagonist 2-(2-furanyl)-7-[3-(4-methoxyphenyl)propyl]-7H-pyrazolo[4,3-e] [1,2,4]triazolo[1,5-C]pyrimidin-5-amine (SCH-442416; 0.017 mg/kg). The protection induced by the A(3) receptor was abrogated in phospholipase C-beta2/beta3 null mice, but the protection mediated by the A(1) or A(2A) receptor remained unaffected in these animals. The adenosine A(3) receptor is a novel cytoprotective receptor that signals selectively via phospholipase C-beta and represents a new target for ameliorating skeletal muscle injury. Topics: Adenosine; Animals; Dihydropyridines; Disease Models, Animal; Hindlimb; Mice; Mice, Inbred C57BL; Mice, Knockout; Muscle, Skeletal; Phenethylamines; Phospholipase C beta; Pyrazoles; Pyrimidines; Receptor, Adenosine A1; Receptor, Adenosine A2A; Receptor, Adenosine A3; Reperfusion Injury; Signal Transduction; Xanthines | 2007 |
Adenosine agonist regulation of outward active transport of fluorescein across retinal pigment epithelium in rabbits.
To investigate the effect of an adenosine agonist, 2-5'-N-ethylcarboxamidoadenosine (NECA), on the outward active transport of fluorescein across the retinal pigment epithelium (RPE) in rabbits. High (5x10(-4)-2x10(-3) M) and low (1x10(-5)-1x10(-4) M) concentrations of NECA or phosphate buffered saline (PBS) were intravitreously injected into Dutch-belted rabbits. Sodium fluorescein was injected intravenously 180 min after NECA. Differential vitreous fluorophotometry was performed 3 hr after the sodium fluorescein injection and the vitreal fluorescein/fluorescein monoglucuronide (F/FG) ratio then was calculated. The F/FG ratios are inversely proportional to the outward active transport of fluorescein across the RPE. Retinal detachments were induced by injection of PBS into the subretinal space after the intravitreous injection of low- or high-dose NECA or PBS, and the size of the blebs was monitored. In eyes that received a low-dose injection of NECA, the F/FG ratio was higher compared with controls (P<0.05); in eyes that received a high-dose intravitreal injection, the F/FG ratio was significantly lower compared with controls (P<0.05). The effect of low-dose NECA on the F/FG ratio was suppressed by the A2 receptor antagonist, ZM241385, and the effect of high-dose NECA was suppressed by the A1 receptor antagonist, 8-cyclopentyl-1, 3-dipropylxanthine. The A3 receptor antagonist MRS1191 did not influence the effect of low- or high-dose NECA. Intravitreal injection of high-dose NECA enhanced the reabsorption of subretinal fluid compared with PBS; however, low-dose NECA inhibited reabsorption of subretinal fluid (P<0.02 and 0.05, respectively). Intravitreous injection of high-dose NECA accelerates the active outward transport across the RPE via A1 receptors and low-dose NECA decelerates it via A2 receptors. Topics: Adenosine; Adenosine A1 Receptor Antagonists; Adenosine A2 Receptor Antagonists; Adenosine A3 Receptor Antagonists; Adenosine-5'-(N-ethylcarboxamide); Animals; Biological Transport, Active; Dihydropyridines; Fluorescein; Fluoresceins; Fluorophotometry; Injections, Intravenous; Male; Pigment Epithelium of Eye; Purinergic P1 Receptor Antagonists; Rabbits; Retinal Detachment; Triazines; Triazoles; Xanthines | 2005 |
Adenosine-enhanced ischemic preconditioning: adenosine receptor involvement during ischemia and reperfusion.
Adenosine-enhanced ischemic preconditioning (APC) extends the cardioprotection of ischemic preconditioning (IPC) by both significantly decreasing myocardial infarct size and significantly enhancing postischemic functional recovery. In this study, the role of adenosine receptors during ischemia-reperfusion was determined. Rabbit hearts (n = 92) were used for Langendorff perfusion. Control hearts were perfused for 180 min, global ischemia hearts received 30-min ischemia and 120-min reperfusion, and IPC hearts received 5-min ischemia and 5-min reperfusion before ischemia. APC hearts received a bolus injection of adenosine coincident with IPC. Adenosine receptor (A(1), A(2), and A(3)) antagonists were used with APC before ischemia and/or during reperfusion. GR-69019X (A(1)/A(3)) and MRS-1191/MRS-1220 (A(3)) significantly increased infarct size in APC hearts when administered before ischemia and significantly decreased functional recovery when administered during both ischemia and reperfusion (P < 0.05 vs. APC). DPCPX (A(1)) administered either before ischemia and/or during reperfusion had no effect on APC cardioprotection. APC-enhanced infarct size reduction is modulated by adenosine receptors primarily during ischemia, whereas APC-enhanced postischemic functional recovery is modulated by adenosine receptors during both ischemia and reperfusion. Topics: Adenosine; Animals; Dihydropyridines; In Vitro Techniques; Ischemic Preconditioning, Myocardial; Myocardial Infarction; Myocardial Reperfusion Injury; Purinergic P1 Receptor Agonists; Purinergic P1 Receptor Antagonists; Rabbits; Receptors, Purinergic P1; Ventricular Pressure; Xanthines | 2001 |
Renal adenosine A3 receptors in the rat: assessment of functional role.
The functional roles of adenosine A3 receptors in the rat kidney were assessed for the first time with respect to A1 receptor-mediated responses. Utilizing a chronically instrumented conscious rat preparation, we tested renal excretory responses to acute administration of the A3 receptor antagonists 3-ethyl-5-benzyl-2-methyl-6-phenyl-4-phenylethynyl-1 ,4-(+)-dihydropridine-3,5-dicarboxylate (MRS-1191) and 9-chloro-2-(2-furyl)-5-phenylacetylamino-[1,2,4]-triazolo[1,5-c]qu inazoline (MRS-1220) with reference to the effects of the A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX). The intravenous administration of DPCPX resulted in significant increases in fluid and sodium excretions without affecting glomerular filtration rate (GFR). This suggests that DPCPX-induced diuretic and natriuretic responses are related to decreased tubular reabsorption. However, neither MRS-1191 nor MRS-1220 alone affected fluid or sodium excretions, or GFR, indicating lack of an effect of either compound on renal function. On the other hand, the co-administration of MRS-1220 with DPCPX abolished both the diuretic and natriuretic responses to DPCPX, being suggestive of antagonism between these two compounds. MRS-1191, however, did not affect the DPCPX-induced fluid and sodium excretions. Neither the A1 nor the A3 receptor antagonists altered potassium excretion individually or in combination. The data suggest that while adenosine A1 receptors are involved in the regulation of renal fluid and sodium transport, A3 receptors do not appear to have a major role in regulation of renal excretory function under baseline physiological conditions. Topics: Animals; Dihydropyridines; Diuresis; Glomerular Filtration Rate; Kidney; Male; Natriuresis; Potassium; Purinergic P1 Receptor Antagonists; Quinazolines; Rats; Rats, Inbred WKY; Receptor, Adenosine A3; Receptors, Purinergic P1; Sodium; Triazoles; Urodynamics; Xanthines | 2000 |
A physiological role of the adenosine A3 receptor: sustained cardioprotection.
Adenosine released during cardiac ischemia exerts a potent, protective effect in the heart. A newly recognized adenosine receptor, the A3 subtype, is expressed on the cardiac ventricular cell, and its activation protects the ventricular heart cell against injury during a subsequent exposure to ischemia. A cultured chicken ventricular myocyte model was used to investigate the cardioprotective role of a novel adenosine A3 receptor. The protection mediated by prior activation of A3 receptors exhibits a significantly longer duration than that produced by activation of the adenosine A1 receptor. Prior exposure of the myocytes to brief ischemia also protected them against injury sustained during a subsequent exposure to prolonged ischemia. The adenosine A3 receptor-selective antagonist 3-ethyl 5-benzyl-2-methyl-6-phenyl-4-phenylethynyl-1, 4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS1191) caused a biphasic inhibition of the protective effect of the brief ischemia. The concomitant presence of the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) converted the MRS1191-induced dose inhibition curve to a monophasic one. The combined presence of both antagonists abolished the protective effect induced by the brief ischemia. Thus, activation of both A1 and A3 receptors is required to mediate the cardioprotective effect of the brief ischemia. Cardiac atrial cells lack native A3 receptors and exhibit a shorter duration of cardioprotection than do ventricular cells. Transfection of atrial cells with cDNA encoding the human adenosine A3 receptor causes a sustained A3 agonist-mediated cardioprotection. The study indicates that cardiac adenosine A3 receptor mediates a sustained cardioprotective function and represents a new cardiac therapeutic target. Topics: Adenosine; Animals; Chick Embryo; Dihydropyridines; Gene Transfer Techniques; Humans; Myocardial Ischemia; Purinergic P1 Receptor Agonists; Purinergic P1 Receptor Antagonists; Receptor, Adenosine A3; Receptors, Purinergic P1; Ventricular Function; Xanthines | 1998 |