Page last updated: 2024-08-16

moxonidine and methyldopa

moxonidine has been researched along with methyldopa in 9 studies

Research

Studies (9)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's2 (22.22)18.2507
2000's3 (33.33)29.6817
2010's4 (44.44)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Lombardo, F; Obach, RS; Waters, NJ1
Chupka, J; El-Kattan, A; Feng, B; Miller, HR; Obach, RS; Troutman, MD; Varma, MV1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Campillo, NE; Guerra, A; Páez, JA1
Chang, G; El-Kattan, A; Miller, HR; Obach, RS; Rotter, C; Steyn, SJ; Troutman, MD; Varma, MV1
Bellera, CL; Bruno-Blanch, LE; Castro, EA; Duchowicz, PR; Goodarzi, M; Ortiz, EV; Pesce, G; Talevi, A1
Koch, HF; Webster, J1
Bock, C; Niederhoffer, N; Szabo, B1
Sica, DA1

Reviews

2 review(s) available for moxonidine and methyldopa

ArticleYear
Aspects of tolerability of centrally acting antihypertensive drugs.
    Journal of cardiovascular pharmacology, 1996, Volume: 27 Suppl 3

    Topics: Antihypertensive Agents; Clonidine; Humans; Imidazoles; Methyldopa; Reserpine; Substance Withdrawal Syndrome

1996
Centrally acting antihypertensive agents: an update.
    Journal of clinical hypertension (Greenwich, Conn.), 2007, Volume: 9, Issue:5

    Topics: Adrenergic alpha-Agonists; Antihypertensive Agents; Blood Pressure; Clonidine; Contraindications; Guanabenz; Guanfacine; Humans; Hypertension; Imidazoles; Methyldopa; Oxazoles; Rilmenidine

2007

Other Studies

7 other study(ies) available for moxonidine and methyldopa

ArticleYear
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Physicochemical determinants of human renal clearance.
    Journal of medicinal chemistry, 2009, Aug-13, Volume: 52, Issue:15

    Topics: Humans; Hydrogen Bonding; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Kidney; Metabolic Clearance Rate; Molecular Weight

2009
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Neural computational prediction of oral drug absorption based on CODES 2D descriptors.
    European journal of medicinal chemistry, 2010, Volume: 45, Issue:3

    Topics: Administration, Oral; Humans; Models, Chemical; Neural Networks, Computer; Permeability; Quantitative Structure-Activity Relationship; Technology, Pharmaceutical

2010
Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination.
    Journal of medicinal chemistry, 2010, Feb-11, Volume: 53, Issue:3

    Topics: Administration, Oral; Biological Availability; Humans; Intestinal Absorption; Pharmaceutical Preparations

2010
Prediction of drug intestinal absorption by new linear and non-linear QSPR.
    European journal of medicinal chemistry, 2011, Volume: 46, Issue:1

    Topics: Humans; Intestinal Absorption; Linear Models; Molecular Conformation; Nonlinear Dynamics; Permeability; Pharmaceutical Preparations; Probability; Quantitative Structure-Activity Relationship; Thermodynamics

2011
Analysis of the receptor involved in the central hypotensive effect of rilmenidine and moxonidine.
    Naunyn-Schmiedeberg's archives of pharmacology, 1999, Volume: 359, Issue:4

    Topics: Adrenergic alpha-Agonists; Adrenergic alpha-Antagonists; Animals; Antihypertensive Agents; Benzazepines; Benzofurans; Blood Pressure; Dose-Response Relationship, Drug; Drug Interactions; Female; Heart Rate; Imidazoles; Imidazoline Receptors; Male; Methyldopa; Norepinephrine; Oxazoles; Rabbits; Receptors, Adrenergic, alpha-2; Receptors, Drug; Rilmenidine; Sympathetic Nervous System; Yohimbine

1999