moxifloxacin has been researched along with perhexiline in 8 studies
Studies (moxifloxacin) | Trials (moxifloxacin) | Recent Studies (post-2010) (moxifloxacin) | Studies (perhexiline) | Trials (perhexiline) | Recent Studies (post-2010) (perhexiline) |
---|---|---|---|---|---|
3,157 | 552 | 1,690 | 572 | 92 | 83 |
Protein | Taxonomy | moxifloxacin (IC50) | perhexiline (IC50) |
---|---|---|---|
Epidermal growth factor receptor | Homo sapiens (human) | 1.4852 | |
Tyrosine-protein kinase Fyn | Homo sapiens (human) | 4.064 | |
Aldo-keto reductase family 1 member B1 | Rattus norvegicus (Norway rat) | 3.2942 | |
Muscarinic acetylcholine receptor M4 | Homo sapiens (human) | 3.5919 | |
Muscarinic acetylcholine receptor M5 | Homo sapiens (human) | 1.0932 | |
Replicase polyprotein 1ab | Severe acute respiratory syndrome coronavirus 2 | 6.38 | |
Cytochrome P450 2D6 | Homo sapiens (human) | 0.9408 | |
Muscarinic acetylcholine receptor M1 | Homo sapiens (human) | 2.7105 | |
D | Rattus norvegicus (Norway rat) | 7.7625 | |
Alpha-2B adrenergic receptor | Rattus norvegicus (Norway rat) | 7.7625 | |
Muscarinic acetylcholine receptor M3 | Homo sapiens (human) | 3.1186 | |
Alpha-2C adrenergic receptor | Rattus norvegicus (Norway rat) | 7.7625 | |
Alpha-2A adrenergic receptor | Rattus norvegicus (Norway rat) | 7.7625 | |
Sodium-dependent noradrenaline transporter | Homo sapiens (human) | 3.2942 | |
Sodium-dependent dopamine transporter | Rattus norvegicus (Norway rat) | 7.7625 | |
Potassium voltage-gated channel subfamily H member 2 | Homo sapiens (human) | 7.7687 | |
Sigma non-opioid intracellular receptor 1 | Homo sapiens (human) | 2.5992 |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 5 (62.50) | 29.6817 |
2010's | 3 (37.50) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Cavalli, A; De Ponti, F; Poluzzi, E; Recanatini, M | 1 |
Keserü, GM | 1 |
Li, J; Rajamani, R; Reynolds, CH; Tounge, BA | 1 |
Jia, L; Sun, H | 1 |
Caron, G; Ermondi, G; Visentin, S | 1 |
Sen, S; Sinha, N | 1 |
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
1 review(s) available for moxifloxacin and perhexiline
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
7 other study(ies) available for moxifloxacin and perhexiline
Article | Year |
---|---|
Toward a pharmacophore for drugs inducing the long QT syndrome: insights from a CoMFA study of HERG K(+) channel blockers.
Topics: Anti-Arrhythmia Agents; Cation Transport Proteins; Cluster Analysis; Databases, Factual; Ether-A-Go-Go Potassium Channels; Long QT Syndrome; Models, Molecular; Molecular Conformation; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Voltage-Gated; Quantitative Structure-Activity Relationship | 2002 |
Prediction of hERG potassium channel affinity by traditional and hologram qSAR methods.
Topics: Cation Transport Proteins; Databases, Factual; Discriminant Analysis; Ether-A-Go-Go Potassium Channels; Holography; Linear Models; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Voltage-Gated; Quantitative Structure-Activity Relationship | 2003 |
A two-state homology model of the hERG K+ channel: application to ligand binding.
Topics: ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Ligands; Models, Biological; Models, Molecular; Potassium Channels, Voltage-Gated; Protein Binding; Protein Conformation | 2005 |
Support vector machines classification of hERG liabilities based on atom types.
Topics: Animals; Arrhythmias, Cardiac; CHO Cells; Computer Simulation; Cricetinae; Cricetulus; Discriminant Analysis; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Humans; Models, Chemical; Patch-Clamp Techniques; Potassium Channel Blockers; Potassium Channels, Voltage-Gated; Predictive Value of Tests; ROC Curve | 2008 |
GRIND-based 3D-QSAR and CoMFA to investigate topics dominated by hydrophobic interactions: the case of hERG K+ channel blockers.
Topics: Ether-A-Go-Go Potassium Channels; Humans; Hydrophobic and Hydrophilic Interactions; Models, Molecular; Potassium Channel Blockers; Quantitative Structure-Activity Relationship | 2009 |
Predicting hERG activities of compounds from their 3D structures: development and evaluation of a global descriptors based QSAR model.
Topics: Computer Simulation; Ether-A-Go-Go Potassium Channels; Humans; Molecular Structure; Organic Chemicals; Quantitative Structure-Activity Relationship | 2011 |
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship | 2012 |