Page last updated: 2024-09-04

moxifloxacin and clozapine

moxifloxacin has been researched along with clozapine in 16 studies

Compound Research Comparison

Studies
(moxifloxacin)
Trials
(moxifloxacin)
Recent Studies (post-2010)
(moxifloxacin)
Studies
(clozapine)
Trials
(clozapine)
Recent Studies (post-2010) (clozapine)
3,1575521,6909,6917473,148

Protein Interaction Comparison

ProteinTaxonomymoxifloxacin (IC50)clozapine (IC50)
Adenylate cyclase type 1 Rattus norvegicus (Norway rat)0.14
Voltage-dependent L-type calcium channel subunit alpha-1FHomo sapiens (human)3.6
5-hydroxytryptamine receptor 4Cavia porcellus (domestic guinea pig)0.032
Aldo-keto reductase family 1 member B1Rattus norvegicus (Norway rat)1.47
Muscarinic acetylcholine receptor M2Homo sapiens (human)0.476
Muscarinic acetylcholine receptor M4Homo sapiens (human)0.045
Muscarinic acetylcholine receptor M1Rattus norvegicus (Norway rat)0.1233
Muscarinic acetylcholine receptor M3Rattus norvegicus (Norway rat)0.1534
Muscarinic acetylcholine receptor M4Rattus norvegicus (Norway rat)0.1534
5-hydroxytryptamine receptor 1AHomo sapiens (human)0.15
5-hydroxytryptamine receptor 2CRattus norvegicus (Norway rat)0.031
Muscarinic acetylcholine receptor M5Rattus norvegicus (Norway rat)0.1534
Muscarinic acetylcholine receptor M5Homo sapiens (human)0.013
Alpha-2A adrenergic receptorHomo sapiens (human)0.09
Beta-2 adrenergic receptorRattus norvegicus (Norway rat)0.14
Muscarinic acetylcholine receptor M2Rattus norvegicus (Norway rat)0.1534
Muscarinic acetylcholine receptor M1Homo sapiens (human)0.0096
Angiotensin-converting enzymeOryctolagus cuniculus (rabbit)2
D(2) dopamine receptorHomo sapiens (human)0.2044
5-hydroxytryptamine receptor 2ARattus norvegicus (Norway rat)0.0886
Alpha-1B adrenergic receptorRattus norvegicus (Norway rat)0.0567
Alpha-2B adrenergic receptorHomo sapiens (human)0.023
Alpha-2C adrenergic receptorHomo sapiens (human)0.0079
DRattus norvegicus (Norway rat)1.066
D(3) dopamine receptorRattus norvegicus (Norway rat)0.9312
5-hydroxytryptamine receptor 1ARattus norvegicus (Norway rat)1.2695
Alpha-2B adrenergic receptorRattus norvegicus (Norway rat)3.5772
D(2) dopamine receptorBos taurus (cattle)1.804
Muscarinic acetylcholine receptor M3Homo sapiens (human)0.078
D(1A) dopamine receptorHomo sapiens (human)0.107
D(4) dopamine receptorHomo sapiens (human)0.0796
Adenylate cyclase type 3Rattus norvegicus (Norway rat)0.14
Alpha-2C adrenergic receptorRattus norvegicus (Norway rat)3.5772
Alpha-2A adrenergic receptorRattus norvegicus (Norway rat)3.5772
Alpha-1D adrenergic receptorRattus norvegicus (Norway rat)0.0567
Sodium-dependent noradrenaline transporter Homo sapiens (human)1.47
Sodium-dependent dopamine transporterRattus norvegicus (Norway rat)5.7544
Histamine H2 receptorHomo sapiens (human)3.61
Alpha-1D adrenergic receptorHomo sapiens (human)0.035
D(1B) dopamine receptorRattus norvegicus (Norway rat)0.9312
Adenylate cyclase type 2Rattus norvegicus (Norway rat)0.14
Adenylate cyclase type 4Rattus norvegicus (Norway rat)0.14
5-hydroxytryptamine receptor 2AHomo sapiens (human)0.0658
5-hydroxytryptamine receptor 2CHomo sapiens (human)0.0658
5-hydroxytryptamine receptor 1BRattus norvegicus (Norway rat)0.373
5-hydroxytryptamine receptor 1DRattus norvegicus (Norway rat)0.587
D(4) dopamine receptorRattus norvegicus (Norway rat)0.9312
5-hydroxytryptamine receptor 1FRattus norvegicus (Norway rat)0.587
5-hydroxytryptamine receptor 2BRattus norvegicus (Norway rat)0.0338
Histamine H1 receptorRattus norvegicus (Norway rat)0.023
Sodium-dependent serotonin transporterHomo sapiens (human)0.546
5-hydroxytryptamine receptor 2C Mus musculus (house mouse)0.028
5-hydroxytryptamine receptor 2AMus musculus (house mouse)0.028
Histamine H1 receptorHomo sapiens (human)0.0049
D(3) dopamine receptorHomo sapiens (human)0.354
Adenylate cyclase type 8Rattus norvegicus (Norway rat)0.14
5-hydroxytryptamine receptor 2BHomo sapiens (human)0.081
Alpha-1A adrenergic receptorRattus norvegicus (Norway rat)0.0567
5-hydroxytryptamine receptor 6Homo sapiens (human)0.0171
D(2) dopamine receptorMus musculus (house mouse)0.29
D(2) dopamine receptorRattus norvegicus (Norway rat)0.6759
Voltage-dependent L-type calcium channel subunit alpha-1D Homo sapiens (human)3.6
5-hydroxytryptamine receptor 2BMus musculus (house mouse)0.028
Adenylate cyclase type 6Rattus norvegicus (Norway rat)0.14
Adenylate cyclase type 5Rattus norvegicus (Norway rat)0.14
Potassium voltage-gated channel subfamily H member 2Homo sapiens (human)1.4162
Voltage-dependent L-type calcium channel subunit alpha-1SHomo sapiens (human)3.6
Voltage-dependent L-type calcium channel subunit alpha-1CHomo sapiens (human)3.6
5-hydroxytryptamine receptor 1AMus musculus (house mouse)2
Adenylyl cyclase 7 Rattus norvegicus (Norway rat)0.14
DBos taurus (cattle)4.09

Research

Studies (16)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's9 (56.25)29.6817
2010's7 (43.75)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Cavalli, A; De Ponti, F; Poluzzi, E; Recanatini, M1
Keserü, GM1
Li, J; Rajamani, R; Reynolds, CH; Tounge, BA1
Nagashima, R; Nishikawa, T; Tobita, M1
Andricopulo, AD; Moda, TL; Montanari, CA1
Lombardo, F; Obach, RS; Waters, NJ1
Jia, L; Sun, H1
Caron, G; Ermondi, G; Visentin, S1
Chupka, J; El-Kattan, A; Feng, B; Miller, HR; Obach, RS; Troutman, MD; Varma, MV1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Chang, G; El-Kattan, A; Miller, HR; Obach, RS; Rotter, C; Steyn, SJ; Troutman, MD; Varma, MV1
Sen, S; Sinha, N1
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ1
Brown, AM; Bruening-Wright, A; Kramer, J; Kuryshev, YA; Myatt, G; Obejero-Paz, CA; Verducci, JS1
Bellman, K; Knegtel, RM; Settimo, L1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1

Reviews

1 review(s) available for moxifloxacin and clozapine

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

15 other study(ies) available for moxifloxacin and clozapine

ArticleYear
Toward a pharmacophore for drugs inducing the long QT syndrome: insights from a CoMFA study of HERG K(+) channel blockers.
    Journal of medicinal chemistry, 2002, Aug-29, Volume: 45, Issue:18

    Topics: Anti-Arrhythmia Agents; Cation Transport Proteins; Cluster Analysis; Databases, Factual; Ether-A-Go-Go Potassium Channels; Long QT Syndrome; Models, Molecular; Molecular Conformation; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Voltage-Gated; Quantitative Structure-Activity Relationship

2002
Prediction of hERG potassium channel affinity by traditional and hologram qSAR methods.
    Bioorganic & medicinal chemistry letters, 2003, Aug-18, Volume: 13, Issue:16

    Topics: Cation Transport Proteins; Databases, Factual; Discriminant Analysis; Ether-A-Go-Go Potassium Channels; Holography; Linear Models; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Voltage-Gated; Quantitative Structure-Activity Relationship

2003
A two-state homology model of the hERG K+ channel: application to ligand binding.
    Bioorganic & medicinal chemistry letters, 2005, Mar-15, Volume: 15, Issue:6

    Topics: ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Ligands; Models, Biological; Models, Molecular; Potassium Channels, Voltage-Gated; Protein Binding; Protein Conformation

2005
A discriminant model constructed by the support vector machine method for HERG potassium channel inhibitors.
    Bioorganic & medicinal chemistry letters, 2005, Jun-02, Volume: 15, Issue:11

    Topics: Animals; CHO Cells; Cricetinae; Discriminant Analysis; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Humans; Potassium Channel Blockers; Potassium Channels, Voltage-Gated

2005
Hologram QSAR model for the prediction of human oral bioavailability.
    Bioorganic & medicinal chemistry, 2007, Dec-15, Volume: 15, Issue:24

    Topics: Administration, Oral; Biological Availability; Holography; Humans; Models, Biological; Models, Molecular; Molecular Structure; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship

2007
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Support vector machines classification of hERG liabilities based on atom types.
    Bioorganic & medicinal chemistry, 2008, Jun-01, Volume: 16, Issue:11

    Topics: Animals; Arrhythmias, Cardiac; CHO Cells; Computer Simulation; Cricetinae; Cricetulus; Discriminant Analysis; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Humans; Models, Chemical; Patch-Clamp Techniques; Potassium Channel Blockers; Potassium Channels, Voltage-Gated; Predictive Value of Tests; ROC Curve

2008
GRIND-based 3D-QSAR and CoMFA to investigate topics dominated by hydrophobic interactions: the case of hERG K+ channel blockers.
    European journal of medicinal chemistry, 2009, Volume: 44, Issue:5

    Topics: Ether-A-Go-Go Potassium Channels; Humans; Hydrophobic and Hydrophilic Interactions; Models, Molecular; Potassium Channel Blockers; Quantitative Structure-Activity Relationship

2009
Physicochemical determinants of human renal clearance.
    Journal of medicinal chemistry, 2009, Aug-13, Volume: 52, Issue:15

    Topics: Humans; Hydrogen Bonding; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Kidney; Metabolic Clearance Rate; Molecular Weight

2009
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination.
    Journal of medicinal chemistry, 2010, Feb-11, Volume: 53, Issue:3

    Topics: Administration, Oral; Biological Availability; Humans; Intestinal Absorption; Pharmaceutical Preparations

2010
Predicting hERG activities of compounds from their 3D structures: development and evaluation of a global descriptors based QSAR model.
    European journal of medicinal chemistry, 2011, Volume: 46, Issue:2

    Topics: Computer Simulation; Ether-A-Go-Go Potassium Channels; Humans; Molecular Structure; Organic Chemicals; Quantitative Structure-Activity Relationship

2011
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship

2012
MICE models: superior to the HERG model in predicting Torsade de Pointes.
    Scientific reports, 2013, Volume: 3

    Topics: ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Humans; Models, Theoretical; Patch-Clamp Techniques; Predictive Value of Tests; Torsades de Pointes

2013
Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds.
    Pharmaceutical research, 2014, Volume: 31, Issue:4

    Topics: Chemistry, Pharmaceutical; Forecasting; Hydrogen-Ion Concentration; Pharmaceutical Preparations; Random Allocation

2014