moxifloxacin has been researched along with azomycin in 40 studies
Studies (moxifloxacin) | Trials (moxifloxacin) | Recent Studies (post-2010) (moxifloxacin) | Studies (azomycin) | Trials (azomycin) | Recent Studies (post-2010) (azomycin) |
---|---|---|---|---|---|
3,157 | 552 | 1,690 | 4,790 | 418 | 1,580 |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 4 (10.00) | 29.6817 |
2010's | 31 (77.50) | 24.3611 |
2020's | 5 (12.50) | 2.80 |
Authors | Studies |
---|---|
Andries, K; Chauffour, A; Jarlier, V; Ji, B | 1 |
Chauffour, A; Jarlier, V; Ji, B; Lefrançois, S; Robert, J; Truffot, C | 1 |
Coates, AR; Hu, Y; Mitchison, DA | 1 |
Almeida, D; Grosset, JH; Nuermberger, E; Rosenthal, I; Tasneen, R; Tyagi, S; Williams, KN | 1 |
Cole, ST; Dhar, N; Ha, YH; Hartkoorn, RC; Sala, C; Schneider, P; Zhang, M | 1 |
Hutson, S | 1 |
Ginsberg, A | 1 |
Bishai, WR; Davis, SL; Harper, J; Jain, SK; Kramnik, I; Nuermberger, EL; Pomper, MG; Skerry, C; Tasneen, R; Weir, M | 1 |
Roehr, B | 1 |
Becker, P; Dawson, R; Diacon, AH; Donald, PR; Everitt, D; Mendel, CM; Spigelman, MK; Symons, G; van Niekerk, C; Venter, A; von Groote-Bidlingmaier, F; Winter, H | 1 |
Kmietowicz, Z | 1 |
Cole, ST; Hartkoorn, RC; Lechartier, B | 1 |
Schaberg, T | 1 |
Dawson, R; Diacon, A | 1 |
Jeong, BH; Koh, WJ; Kwon, YS | 1 |
Garcia-Prats, AJ; Hesseling, AC; Schaaf, HS; Seddon, JA | 1 |
Diao, C; Liang, L; Liu, X; Wang, L; Xu, Y; Zhang, J; Zhang, S | 1 |
Bagcchi, S | 1 |
Amoabeng, O; Mdluli, KE; Minkowski, A; Nuermberger, EL; Tasneen, R; Upton, AM; Williams, K | 1 |
Burger, DA; Conradie, A; Dawson, R; Diacon, AH; Donald, PR; Eisenach, K; Everitt, D; Ive, P; Mendel, CM; Ntinginya, NE; Page-Shipp, L; Pym, A; Reither, K; Schall, R; Spigelman, M; van Niekerk, C; Variava, E; Venter, A; von Groote-Bidlingmaier, F | 1 |
Migliori, GB; Sotgiu, G | 1 |
Centis, R; D'Ambrosio, L; Fuentes, Z; Migliori, GB; Sotgiu, G; Tiberi, S; Zumla, A | 1 |
Das, SC; Krittaphol, W; Momin, MAM; Thien, SJ | 1 |
Cooke, G; Fortunak, J; Gotham, D; Hill, A; Khoo, S; Nytko, FE; Pozniak, A | 1 |
Mendel, C; Murray, S; Spigelman, M | 1 |
Converse, PJ; Li, SY; Mdluli, K; Nuermberger, EL; Soni, H; Tasneen, R; Tyagi, S | 1 |
Dong, L; Fu, Y; Huang, H; Huo, F; Jing, W; Li, Y; Ma, Y; Pang, Y; Zhao, L; Zong, Z | 1 |
Jo, KW; Nam, GB; Shim, TS; Yoon, HY | 1 |
Aguilar-Ayala, DA; Cnockaert, M; Gonzalez-Y-Merchand, J; Martin, A; Palomino, JC; Vandamme, P | 1 |
de Miranda Silva, C; Drusano, GL; Hajihosseini, A; Louie, A; Myrick, J; Nole, J; Schmidt, S | 1 |
Khalid, UK; Mathuria, KK; Munjal, SK; Myneedu, VP; Puri, MM; Sarin, R; Singla, N; Singla, R; Verma, A; Vohra, V | 1 |
Bethunaickan, R; Chandramohan, Y; Padmanaban, V; Ranganathan, UD; Swaminathan, S; Tripathy, S | 1 |
Del Parigi, A; Everitt, D; Li, H; Li, M; Mendel, C; Nedelman, JR; Salinger, DH | 1 |
Bendet, P; Berg, A; Cirrincione, K; Deshpande, D; Gumbo, T; Hanna, D; Hermann, D; Magombedze, G; Martin, K; Romero, K; Srivastava, S; van Zyl, J | 1 |
Burger, DA; Conradie, A; Conradie, F; Crook, AM; Dawson, R; Diacon, AH; Everitt, DE; Haraka, F; Li, M; Mendel, CM; Ntinginya, NE; Okwera, A; Rassool, MS; Reither, K; Sebe, MA; Spigelman, M; Staples, S; Tweed, CD; van Niekerk, CH; Variava, E | 1 |
Furin, J; McKenna, L | 1 |
de Jong, BC; Decroo, T; Lynen, L; Piubello, A; Van Deun, A | 1 |
El-Amin, W; Everitt, D; Li, M; Makhene, MK; Nedelman, J; Osborn, B; Saviolakis, GA; Yang, TJ | 1 |
de Jong, BC; Decroo, T; Gils, T; Lynen, L; Van Deun, A | 1 |
Carr, W; Converse, PJ; Dartois, V; Dooley, KE; Garcia, A; Kurbatova, E; Nuermberger, EL; Stout, JE; Tasneen, R; Vernon, AA; Zimmerman, MD | 1 |
5 review(s) available for moxifloxacin and azomycin
Article | Year |
---|---|
[Tuberculosis: new treatment options and updated recommendations].
Topics: Antitubercular Agents; Aza Compounds; Cross-Sectional Studies; Diagnosis, Differential; Diarylquinolines; Fluoroquinolones; Germany; Humans; Moxifloxacin; Nitroimidazoles; Oxazoles; Prognosis; Quinolines; Rifampin; Tuberculosis; Tuberculosis, Multidrug-Resistant | 2013 |
PA-824 , moxifloxacin and pyrazinamide combination therapy for tuberculosis.
Topics: Animals; Antitubercular Agents; Aza Compounds; Clinical Trials as Topic; Drug Combinations; Drug Resistance, Multiple, Bacterial; Fluoroquinolones; Humans; Molecular Structure; Moxifloxacin; Nitroimidazoles; Pyrazinamide; Quinolines; Tuberculosis, Pulmonary | 2013 |
Tuberculosis: clinical trials and new drug regimens.
Topics: Acetamides; Adamantane; Antitubercular Agents; Clinical Trials as Topic; Diarylquinolines; Drug Administration Schedule; Drug Design; Ethylenediamines; Female; Fluoroquinolones; Humans; Levofloxacin; Linezolid; Male; Moxifloxacin; Nitroimidazoles; Oxazoles; Oxazolidinones; Spiro Compounds; Thiazines; Tuberculosis; Tuberculosis, Multidrug-Resistant | 2014 |
Managing multidrug-resistant tuberculosis in children: review of recent developments.
Topics: Antitubercular Agents; Child; Child, Preschool; Directly Observed Therapy; Drug Administration Schedule; Ethionamide; Fluoroquinolones; Humans; Infant; Moxifloxacin; Nitroimidazoles; Practice Guidelines as Topic; Prevalence; Pyrazinamide; Risk Factors; Treatment Outcome; Tuberculosis, Multidrug-Resistant | 2014 |
Pretomanid for tuberculosis: a systematic review.
Topics: Antitubercular Agents; Humans; Linezolid; Moxifloxacin; Nitroimidazoles; Pyrazinamide; Randomized Controlled Trials as Topic; Rifampin; Tuberculosis; Tuberculosis, Multidrug-Resistant | 2022 |
5 trial(s) available for moxifloxacin and azomycin
Article | Year |
---|---|
14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial.
Topics: Adult; Antitubercular Agents; Aza Compounds; Colony Count, Microbial; Diarylquinolines; Double-Blind Method; Drug Therapy, Combination; Female; Fluoroquinolones; Humans; Male; Microbial Viability; Moxifloxacin; Mycobacterium tuberculosis; Nitroimidazoles; Prospective Studies; Pyrazinamide; Quinolines; Sputum; Tuberculosis, Pulmonary; Young Adult | 2012 |
Efficiency and safety of the combination of moxifloxacin, pretomanid (PA-824), and pyrazinamide during the first 8 weeks of antituberculosis treatment: a phase 2b, open-label, partly randomised trial in patients with drug-susceptible or drug-resistant pul
Topics: Adolescent; Adult; Antitubercular Agents; Colony Count, Microbial; Drug Therapy, Combination; Ethambutol; Female; Fluoroquinolones; Humans; Isoniazid; Male; Moxifloxacin; Nitroimidazoles; Pyrazinamide; Rifampin; South Africa; Sputum; Tanzania; Treatment Outcome; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary; Young Adult | 2015 |
Long-Term Effects on QT Prolongation of Pretomanid Alone and in Combinations in Patients with Tuberculosis.
Topics: Antitubercular Agents; Computer Simulation; Diarylquinolines; Double-Blind Method; Drug Therapy, Combination; Electrocardiography; Heart Rate; Humans; Linezolid; Long QT Syndrome; Models, Statistical; Moxifloxacin; Mycobacterium tuberculosis; Nitroimidazoles; Pyrazinamide; Tuberculosis, Multidrug-Resistant | 2019 |
Bedaquiline, moxifloxacin, pretomanid, and pyrazinamide during the first 8 weeks of treatment of patients with drug-susceptible or drug-resistant pulmonary tuberculosis: a multicentre, open-label, partially randomised, phase 2b trial.
Topics: Antitubercular Agents; Diarylquinolines; Drug Administration Schedule; Drug Therapy, Combination; Humans; Moxifloxacin; Nitroimidazoles; Pyrazinamide; Rifampin; South Africa; Sputum; Tanzania; Treatment Outcome; Tuberculosis, Multidrug-Resistant; Uganda | 2019 |
Phase 1 Study of the Effects of the Tuberculosis Treatment Pretomanid, Alone and in Combination With Moxifloxacin, on the QTc Interval in Healthy Volunteers.
Topics: Adolescent; Adult; Antitubercular Agents; Cross-Over Studies; Dose-Response Relationship, Drug; Double-Blind Method; Drug Interactions; Electrocardiography; Female; Humans; Long QT Syndrome; Male; Middle Aged; Moxifloxacin; Nitroimidazoles; Young Adult | 2021 |
30 other study(ies) available for moxifloxacin and azomycin
Article | Year |
---|---|
Bactericidal activities of R207910 and other newer antimicrobial agents against Mycobacterium leprae in mice.
Topics: Acetamides; Animals; Anti-Infective Agents; Aza Compounds; Diarylquinolines; Female; Fluoroquinolones; Leprosy; Linezolid; Mice; Moxifloxacin; Mycobacterium leprae; Nitroimidazoles; Oxazolidinones; Quinolines | 2006 |
In vitro and in vivo activities of rifampin, streptomycin, amikacin, moxifloxacin, R207910, linezolid, and PA-824 against Mycobacterium ulcerans.
Topics: Acetamides; Amikacin; Animals; Anti-Bacterial Agents; Anti-Infective Agents; Aza Compounds; Colony Count, Microbial; Diarylquinolines; Dose-Response Relationship, Drug; Female; Fluoroquinolones; Foot; In Vitro Techniques; Linezolid; Mice; Mice, Inbred BALB C; Microbial Sensitivity Tests; Moxifloxacin; Mycobacterium Infections, Nontuberculous; Mycobacterium ulcerans; Nitroimidazoles; Oxazolidinones; Quinolines; Rifampin; Streptomycin; Survival Analysis; Time Factors | 2006 |
Comparison of the sterilising activities of the nitroimidazopyran PA-824 and moxifloxacin against persisting Mycobacterium tuberculosis.
Topics: Antitubercular Agents; Aza Compounds; Colony Count, Microbial; Dose-Response Relationship, Drug; Fluoroquinolones; Microbial Sensitivity Tests; Moxifloxacin; Mycobacterium tuberculosis; Nitroimidazoles; Quinolines; Time Factors | 2008 |
Powerful bactericidal and sterilizing activity of a regimen containing PA-824, moxifloxacin, and pyrazinamide in a murine model of tuberculosis.
Topics: Animals; Antitubercular Agents; Aza Compounds; Colony Count, Microbial; Disease Models, Animal; Drug Therapy, Combination; Female; Fluoroquinolones; Humans; Lung; Mice; Mice, Inbred BALB C; Moxifloxacin; Mycobacterium tuberculosis; Nitroimidazoles; Pyrazinamide; Quinolines; Treatment Outcome; Tuberculosis, Pulmonary | 2008 |
Simple model for testing drugs against nonreplicating Mycobacterium tuberculosis.
Topics: Antitubercular Agents; Aza Compounds; Fluoroquinolones; Isoniazid; Meropenem; Moxifloxacin; Mycobacterium tuberculosis; Nitroimidazoles; Quinolines; Rifampin; Streptomycin; Thienamycins | 2010 |
Half-century-old TB drugs get a facelift in new cocktails.
Topics: Antitubercular Agents; Aza Compounds; Clinical Trials as Topic; Drug Discovery; Drug Therapy, Combination; Fluoroquinolones; Humans; Moxifloxacin; Nitroimidazoles; Pyrazinamide; Quinolines; Tuberculosis | 2010 |
The TB Alliance: overcoming challenges to chart the future course of TB drug development.
Topics: Antitubercular Agents; Aza Compounds; Clinical Trials as Topic; Diarylquinolines; Drug Evaluation, Preclinical; Fluoroquinolones; Humans; Models, Organizational; Moxifloxacin; Nitroimidazoles; Quinolines; Tuberculosis | 2011 |
Mouse model of necrotic tuberculosis granulomas develops hypoxic lesions.
Topics: Animals; Antitubercular Agents; Aza Compounds; Disease Models, Animal; Fluoroquinolones; Gene Expression Profiling; Genes, Bacterial; Granuloma; Hypoxia; Immunohistochemistry; Male; Mice; Mice, Inbred C3H; Moxifloxacin; Mycobacterium tuberculosis; Nitroimidazoles; Positron-Emission Tomography; Pyrazinamide; Quinolines; Treatment Outcome; Tuberculosis | 2012 |
Trial tests new combination of drugs to treat tuberculosis.
Topics: AIDS-Related Opportunistic Infections; Antitubercular Agents; Aza Compounds; Clinical Trials as Topic; Drug Administration Schedule; Drug Resistance, Bacterial; Drug Therapy, Combination; Fluoroquinolones; Humans; Moxifloxacin; Mycobacterium tuberculosis; Nitroimidazoles; Pyrazinamide; Quinolines; Research Support as Topic; Tuberculosis; United States | 2012 |
New drug combination for TB is tested in unique trial.
Topics: Antitubercular Agents; Aza Compounds; Clinical Trials as Topic; Drug Combinations; Fluoroquinolones; Humans; Moxifloxacin; Nitroimidazoles; Pyrazinamide; Quinolines; Tuberculosis | 2012 |
In vitro combination studies of benzothiazinone lead compound BTZ043 against Mycobacterium tuberculosis.
Topics: Adamantane; Antitubercular Agents; Aza Compounds; Diarylquinolines; Drug Combinations; Drug Synergism; Ethambutol; Ethylenediamines; Fluoroquinolones; Isoniazid; Meropenem; Microbial Sensitivity Tests; Microbial Viability; Moxifloxacin; Mycobacterium tuberculosis; Nitroimidazoles; Quinolines; Rifampin; Spiro Compounds; Thiazines; Thienamycins | 2012 |
LC-MS/MS method for the simultaneous determination of PA-824, moxifloxacin and pyrazinamide in rat plasma and its application to pharmacokinetic study.
Topics: Animals; Chromatography, Liquid; Drug Interactions; Fluoroquinolones; Limit of Detection; Metronidazole; Moxifloxacin; Nitroimidazoles; Plasma; Pyrazinamide; Rats; Tandem Mass Spectrometry | 2014 |
Novel drug combination for tuberculosis to be tested across 50 sites.
Topics: Antitubercular Agents; Aza Compounds; Clinical Trials, Phase II as Topic; Drug Therapy, Combination; Fluoroquinolones; Humans; Moxifloxacin; Nitroimidazoles; Pyrazinamide; Quinolines; Tuberculosis | 2014 |
Contribution of the nitroimidazoles PA-824 and TBA-354 to the activity of novel regimens in murine models of tuberculosis.
Topics: Animals; Antitubercular Agents; Clofazimine; Diarylquinolines; Disease Models, Animal; Drug Therapy, Combination; Female; Fluoroquinolones; Mice; Mice, Inbred BALB C; Microbial Sensitivity Tests; Moxifloxacin; Mycobacterium tuberculosis; Nitroimidazoles; Oxazines; Oxazoles; Pyrazinamide; Random Allocation; Tuberculosis | 2015 |
New effective antituberculosis regimens.
Topics: Antitubercular Agents; Female; Fluoroquinolones; Humans; Male; Moxifloxacin; Nitroimidazoles; Pyrazinamide; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary | 2015 |
Applicability of the shorter 'Bangladesh regimen' in high multidrug-resistant tuberculosis settings.
Topics: Antitubercular Agents; Clinical Protocols; Diarylquinolines; Drug Therapy, Combination; Ethambutol; Fluoroquinolones; Humans; Isoniazid; Moxifloxacin; Mycobacterium tuberculosis; Nitroimidazoles; Oxazoles; Pyrazinamide; Tuberculosis, Multidrug-Resistant; World Health Organization | 2017 |
Simultaneous HPLC assay for pretomanid (PA-824), moxifloxacin and pyrazinamide in an inhaler formulation for drug-resistant tuberculosis.
Topics: Administration, Inhalation; Antitubercular Agents; Chemistry, Pharmaceutical; Chromatography, High Pressure Liquid; Drug Compounding; Fluoroquinolones; Moxifloxacin; Nitroimidazoles; Pyrazinamide; Tuberculosis, Multidrug-Resistant | 2017 |
Estimated generic prices for novel treatments for drug-resistant tuberculosis.
Topics: Algorithms; Antitubercular Agents; Commerce; Diarylquinolines; Drug Costs; Drugs, Generic; Fluoroquinolones; Humans; Moxifloxacin; Nitroimidazoles; Oxazoles; Tuberculosis, Multidrug-Resistant | 2017 |
TB Alliance regimen development for multidrug-resistant tuberculosis.
Topics: Antitubercular Agents; Clinical Protocols; Diarylquinolines; Dose-Response Relationship, Drug; Ethambutol; Extensively Drug-Resistant Tuberculosis; Fluoroquinolones; Humans; Isoniazid; Linezolid; Moxifloxacin; Nitroimidazoles; Pyrazinamide; Randomized Controlled Trials as Topic; Research Design; Rifampin; Tuberculosis, Multidrug-Resistant | 2016 |
Bactericidal and Sterilizing Activity of a Novel Regimen with Bedaquiline, Pretomanid, Moxifloxacin, and Pyrazinamide in a Murine Model of Tuberculosis.
Topics: Animals; Antitubercular Agents; Diarylquinolines; Disease Models, Animal; Female; Fluoroquinolones; Mice; Mice, Inbred BALB C; Moxifloxacin; Mycobacterium tuberculosis; Nitroimidazoles; Pyrazinamide; Tuberculosis, Pulmonary | 2017 |
Topics: Antitubercular Agents; Beijing; China; Clofazimine; Diarylquinolines; DNA Gyrase; Drug Resistance, Multiple, Bacterial; Extensively Drug-Resistant Tuberculosis; Fluoroquinolones; Gatifloxacin; Humans; Linezolid; Microbial Sensitivity Tests; Moxifloxacin; Mutation; Mycobacterium tuberculosis; Nitroimidazoles; Oxazoles | 2017 |
Clinical significance of QT-prolonging drug use in patients with MDR-TB or NTM disease.
Topics: Adolescent; Adult; Aged; Aged, 80 and over; Antitubercular Agents; Azithromycin; Child; Clarithromycin; Clofazimine; Diarylquinolines; Female; Fluoroquinolones; Follow-Up Studies; Humans; Lost to Follow-Up; Macrolides; Male; Middle Aged; Moxifloxacin; Mycobacterium Infections, Nontuberculous; Mycobacterium tuberculosis; Nitroimidazoles; Nontuberculous Mycobacteria; Oxazoles; Retrospective Studies; Tuberculosis, Multidrug-Resistant; Young Adult | 2017 |
Antimicrobial activity against Mycobacterium tuberculosis under in vitro lipid-rich dormancy conditions.
Topics: Amikacin; Anti-Bacterial Agents; Antitubercular Agents; Drug Tolerance; Fluoroquinolones; Genetic Fitness; Genotype; Humans; Lipid Metabolism; Lipids; Microbial Sensitivity Tests; Models, Biological; Moxifloxacin; Mycobacterium Infections, Nontuberculous; Mycobacterium tuberculosis; Nitroimidazoles; Rifampin | 2018 |
Effect of Moxifloxacin plus Pretomanid against
Topics: Antitubercular Agents; Drug Combinations; Drug Interactions; Drug Resistance, Fungal; Microbial Sensitivity Tests; Models, Statistical; Moxifloxacin; Mycobacterium tuberculosis; Nitroimidazoles | 2019 |
Early efficacy and safety of Bedaquiline and Delamanid given together in a "Salvage Regimen" for treatment of drug-resistant tuberculosis.
Topics: Adult; Cardiotoxicity; Clofazimine; Diarylquinolines; Drug Therapy, Combination; Electrocardiography; Female; Humans; Imipenem; Male; Moxifloxacin; Nitroimidazoles; Oxazoles; Salvage Therapy; Sputum; Survival Rate; Tuberculosis, Multidrug-Resistant; Young Adult | 2019 |
In vitro interaction profiles of the new antitubercular drugs bedaquiline and delamanid with moxifloxacin against clinical Mycobacterium tuberculosis isolates.
Topics: Antitubercular Agents; Diarylquinolines; Drug Resistance, Multiple, Bacterial; Drug Synergism; Extensively Drug-Resistant Tuberculosis; Humans; Microbial Sensitivity Tests; Moxifloxacin; Mycobacterium tuberculosis; Nitroimidazoles; Oxazines; Oxazoles; Tuberculosis, Multidrug-Resistant; Xanthenes | 2019 |
Duration of pretomanid/moxifloxacin/pyrazinamide therapy compared with standard therapy based on time-to-extinction mathematics.
Topics: Antitubercular Agents; Drug Therapy, Combination; Humans; Mathematics; Moxifloxacin; Mycobacterium tuberculosis; Nitroimidazoles; Pyrazinamide; Tuberculosis | 2020 |
Are pretomanid-containing regimens for tuberculosis a victory or a victory narrative?
Topics: Diarylquinolines; Humans; Moxifloxacin; Nitroimidazoles; Pyrazinamide; Tuberculosis; Tuberculosis, Pulmonary | 2019 |
Tuberculosis treatment: one-shot approach or cascade of regimens?
Topics: Diarylquinolines; Humans; Moxifloxacin; Nitroimidazoles; Pyrazinamide; Tuberculosis; Tuberculosis, Pulmonary | 2020 |
Novel Regimens of Bedaquiline-Pyrazinamide Combined with Moxifloxacin, Rifabutin, Delamanid and/or OPC-167832 in Murine Tuberculosis Models.
Topics: Animals; Antibiotics, Antitubercular; Antitubercular Agents; Diarylquinolines; Disease Models, Animal; Drug Administration Schedule; Drug Therapy, Combination; Isoniazid; Mice; Mice, Inbred BALB C; Moxifloxacin; Mycobacterium tuberculosis; Nitroimidazoles; Oxazoles; Pyrazinamide; Rifabutin; Tuberculosis | 2022 |