morphine-chloride and pimaric-acid

morphine-chloride has been researched along with pimaric-acid* in 1 studies

Other Studies

1 other study(ies) available for morphine-chloride and pimaric-acid

ArticleYear
Pimaradienoic acid inhibits inflammatory pain: inhibition of NF-κB activation and cytokine production and activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway.
    Journal of natural products, 2014, Nov-26, Volume: 77, Issue:11

    Pimaradienoic acid (1) is a pimarane diterpene (ent-pimara-8(14),15-dien-19-oic acid) extracted at high amounts from various plants including Vigueira arenaria Baker. Compound 1 inhibited carrageenan-induced paw edema and acetic acid-induced abdominal writhing, which are its only known anti-inflammatory activities. Therefore, it is important to further investigate the analgesic effects of 1. Oral administration of 1 (1, 3, and 10 mg/kg) inhibited the acetic acid-induced writhing. This was also observed at 10 mg/kg via sc and ip routes. Both phases of the formalin- and complete Freund's adjuvant (CFA)-induced paw flinch and time spent licking the paw were inhibited by 1. Compound 1 inhibited carrageenan-, CFA-, and PGE2-induced mechanical hyperalgesia. Treatment with 1 inhibited carrageenan-induced production of TNF-α, IL-1β, IL-33, and IL-10 and nuclear factor κB activation. Pharmacological inhibitors also demonstrated that the analgesic effects of 1 depend on activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway. Compound 1 did not alter plasma levels of AST, ALT, or myeloperoxidase activity in the stomach. These results demonstrate that 1 causes analgesic effects associated with the inhibition of NF-κB activation, reduction of cytokine production, and activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway.

    Topics: Acetic Acid; Analgesics; Anti-Inflammatory Agents; Carrageenan; Cyclic GMP; Diterpenes; Edema; Freund's Adjuvant; Hyperalgesia; Interleukin-10; Interleukin-1beta; KATP Channels; Molecular Structure; Pain; Potassium Channels; Signal Transduction; Tumor Necrosis Factor-alpha

2014