morphinans and higenamine

morphinans has been researched along with higenamine* in 2 studies

Other Studies

2 other study(ies) available for morphinans and higenamine

ArticleYear
Discovery of chemical markers for improving the quality and safety control of Sinomenium acutum stem by the simultaneous determination of multiple alkaloids using UHPLC-QQQ-MS/MS.
    Scientific reports, 2020, 08-25, Volume: 10, Issue:1

    Sinomenium acutum stem is a popular traditional Chinese medicine used to treat bone and joint diseases. Sinomenine is considered the only chemical marker for the quality control of S. acutum stem in mainstream pharmacopeias. However, higenamine in S. acutum stem is a novel stimulant that was banned by the World Anti-Doping Agency in 2017. Therefore, enhancing the quality and safety control of S. acutum stem to avoid potential safety risks is of utmost importance. In this study, a fast, sensitive, precise, and accurate method for the simultaneous determination of 11 alkaloids in S. acutum stem by ultrahigh-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-QQQ-MS/MS) was established. This method successfully analyzed thirty-five batches of S. acutum stem samples. The average contents of sinomenine, magnoflorine, coclaurine, acutumine, higenamine, sinoacutine, palmatine, magnocurarine, columbamine, 8-oxypalmatine, and jatrorrhizine were 24.9 mg/g, 6.35 mg/g, 435 μg/g, 435 μg/g, 288 μg/g, 44.4 μg/g, 22.5 μg/g, 21.1 μg/g, 15.8 μg/g, 9.30 μg/g, and 8.75 μg/g, respectively. Multivariate analysis, including principal component analysis (PCA), orthogonal partial least square method-discriminant analysis (OPLS-DA), and hierarchical cluster analysis (HCA), were performed to characterize the importance and differences among these alkaloids in S. acutum stem samples. As a result, sinomenine, magnoflorine, coclaurine, acutumine, and higenamine are proposed as chemical markers for quality control. Higenamine and coclaurine are also recommended as chemical markers for safety control. This report provides five alkaloids that can be used as chemical markers for improving the quality and safety control of S. acutum stem. It also alerts athletes to avoid the risks associated with consuming S. acutum stem.

    Topics: Alkaloids; Aporphines; Chromatography, High Pressure Liquid; Cluster Analysis; Drugs, Chinese Herbal; Isoquinolines; Least-Squares Analysis; Morphinans; Plant Extracts; Plant Stems; Principal Component Analysis; Sinomenium; Solvents; Spiro Compounds; Tandem Mass Spectrometry; Tetrahydroisoquinolines

2020
Morphine biosynthesis in opium poppy involves two cell types: sieve elements and laticifers.
    The Plant cell, 2013, Volume: 25, Issue:10

    Immunofluorescence labeling and shotgun proteomics were used to establish the cell type-specific localization of morphine biosynthesis in opium poppy (Papaver somniferum). Polyclonal antibodies for each of six enzymes involved in converting (R)-reticuline to morphine detected corresponding antigens in sieve elements of the phloem, as described previously for all upstream enzymes transforming (S)-norcoclaurine to (S)-reticuline. Validated shotgun proteomics performed on whole-stem and latex total protein extracts generated 2031 and 830 distinct protein families, respectively. Proteins corresponding to nine morphine biosynthetic enzymes were represented in the whole stem, whereas only four of the final five pathway enzymes were detected in the latex. Salutaridine synthase was detected in the whole stem, but not in the latex subproteome. The final three enzymes converting thebaine to morphine were among the most abundant active latex proteins despite a limited occurrence in laticifers suggested by immunofluorescence labeling. Multiple charge isoforms of two key O-demethylases in the latex were revealed by two-dimensional immunoblot analysis. Salutaridine biosynthesis appears to occur only in sieve elements, whereas conversion of thebaine to morphine is predominant in adjacent laticifers, which contain morphine-rich latex. Complementary use of immunofluorescence labeling and shotgun proteomics has substantially resolved the cellular localization of morphine biosynthesis in opium poppy.

    Topics: Alkaloids; Isoenzymes; Molecular Sequence Data; Morphinans; Morphine; Papaver; Plant Cells; Plant Proteins; Proteomics; Tetrahydroisoquinolines; Thebaine

2013