morphinans has been researched along with deltakephalin* in 5 studies
5 other study(ies) available for morphinans and deltakephalin
Article | Year |
---|---|
Kappa-opioid receptor stimulation abolishes mu- but not delta-mediated inhibitory control of spinal Met-enkephalin release.
The possible opioid control through delta, mu and kappa receptors of the spinal release of Met-enkephalin-like material (MELM) was investigated in halothane-anaesthetized rats. The intrathecal perfusion of the delta agonist DTLET (10 microM) or the mu agonist DAGO (10 microM) resulted in a marked inhibition of MELM release, which could be prevented by the selective antagonists naltrindole and naloxone, respectively. Although the kappa agonist U 50488 H (10 microM) was inactive per se, it completely suppressed the inhibitory effect of DAGO, without affecting that of DTLET. As the selective kappa antagonist norbinaltorphimine blocked the action of U 50488 H, it can be concluded that kappa receptors modulate the mu- (but not the delta-) mediated feed back control of spinal enkephalinergic neurones. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Methionine; Enkephalins; Indoles; Injections, Spinal; Male; Morphinans; Naloxone; Naltrexone; Neurons; Oligopeptides; Pyrrolidines; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Spinal Cord | 1992 |
Feedback inhibition of met-enkephalin release from the rat spinal cord in vivo.
The possible existence of a feedback control by endogenous opioids of the spinal release of met-enkephalin-like material was assessed in vivo, in halothane-anesthetized rats whose intrathecal space was continuously perfused with an artificial cerebrospinal fluid supplemented with various opioid-related drugs. Both the intrathecal perfusion of the mu agonist D-Ala2-D-MePhe4-Gly-ol5-enkephalin (DAGO) (10 microM) and the delta agonist Tyr-D-Thr-Gly-Phe-Leu-Thr (DTLET) (10 microM) produced a significant inhibition of the spinal outflow of met-enkephalin-like material. The effect of DAGO, but not that of DTLET, could be prevented by naloxone (10 microM), and, conversely, the effect of DLTET, but not that of DAGO, was no longer observed in the presence of naltrindole (10 microM). Therefore naloxone and naltrindole acted as potent and selective mu and delta antagonists, respectively, when perfused at 10 microM in the intrathecal space of halothane-anesthetized rats. As expected from the lack of a tonic opioid control of spinal enkephalinergic neurones, neither naloxone nor naltrindole alone affected the spontaneous outflow of met-enkephalin-like material. However, naltrindole, but not naloxone, markedly increased the spinal overflow of met-enkephalin-like material due to intrathecal administration of either porcine calcitonin (10 microM) or the peptidase inhibitors thiorphan (10 microM) plus bestatin (20 microM). These data suggest that delta, but not mu, receptors are involved in a phasic opioid inhibitory control of the release of met-enkephalin-like material in the rat spinal cord.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Animals; Calcitonin; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Methionine; Enkephalins; Feedback; Indoles; Injections, Spinal; Leucine; Male; Morphinans; Naloxone; Naltrexone; Oligopeptides; Radioimmunoassay; Rats; Rats, Inbred Strains; Spinal Cord; Thiorphan | 1992 |
Opioid delta agonists and endogenous enkephalins induce different emotional reactivity than mu agonists after injection in the rat ventral tegmental area.
The possible role of opioid receptor heterogeneity in the biphasic changes in locomotion (activation and inhibition) induced by non-selective opiates such as morphine, has been investigated by measuring the behaviour of rats exposed to different environments after injection into the ventral tegmental area, of selective mu (DAGO) or delta (DTLET, DSTBULET, BUBU) opioid agonists and of kelatorphan, a complete inhibitor of enkephalin metabolism. delta agonists or kelatorphan-induced hyperactivity in a familiar (actimeter), unfamiliar (four-hole box) and a fear inducing (open-field) environment. These effects were suppressed by naloxone and delta selective antagonists (ICI 174, 864 2 mg/kg SC, naltrindole 7 nmol in the ventral tegmental area). Moreover, the delta agonists and endogenous enkephalins protected by kelatorphan did not affect the emotional state of rats measured in an elevated plus maze. Infused into the ventral tegmental area, DAGO also enhanced locomotion in the actimeter but in contrast to delta agonists and kelatorphan, the mu agonist decreased activity in the open-field and the four-hole box. The hypoactivity observed in these tests could be related to an enhanced emotionality produced by mu receptor stimulation, as shown by the significant decrease in the number of visits and time spent in open arms of the elevated plus maze. Naloxone (0.3 mg/kg SC) but not delta selective antagonists, blocked the various responses induced by DAGO. Topics: Animals; Anxiety; Emotions; Endorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Exploratory Behavior; Indoles; Injections; Male; Morphinans; Naloxone; Naltrexone; Narcotic Antagonists; Oligopeptides; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, mu; Tegmentum Mesencephali | 1991 |
In vivo tonic inhibition of spinal substance P (-like material) release by endogenous opioid(s) acting at delta receptors.
Although numerous data support the existence of a presynaptic inhibitory control by opioids of substance P-containing primary afferent fibres entering the dorsal horn of the spinal cord, the exact nature of the opioid receptor involved in this control is still a matter of debate. In the present study, the potential role of delta opioid receptors was investigated by looking for the possible effects of selective delta ligands on the in vivo release of substance P-like material from the whole spinal cord in halothane-anaesthetized rats. Perfusion of the intrathecal space allowed the collection of substance P-like material that was released at a constant rate of approximately 0.65 pg substance P equivalents/min for at least 135 min. The addition of Tyr-D-Thr-Gly-Phe-Leu-Thr (10 microM) or dermenkephalin (10 microM), two selective delta agonists, to the perfusing fluid produced a marked reduction (-50-65%) in substance P-like material outflow which could be prevented by the selective delta antagonist naltrindole (10 microM) but not by naloxone (10 microM), which acts preferentially on mu opioid receptors. Furthermore, naltrindole alone (or the association of this antagonist plus dermenkephalin) enhanced the outflow of substance P-like material (+ 170%) as expected from the blockade of a tonic inhibitory control due to the stimulation of delta receptors by endogenous opioids.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Amino Acid Sequence; Animals; Depression, Chemical; Indoles; Injections, Spinal; Male; Molecular Sequence Data; Morphinans; Naloxone; Naltrexone; Oligopeptides; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, Opioid, delta; Secretory Rate; Spinal Cord; Substance P | 1991 |
Pharmacological and molecular properties of opioid binding sites synthesized in a cell-free translation system.
Cell-free translation of mRNA, extracted from NG108-15 cells, was used to examine some properties of the opioid binding sites synthesized in vitro. A monoclonal antiidiotype antibody directed against the delta opioid receptor immunoprecipitated a major band of Mr 51,000. Translational immunoassays of poly[A]+RNA, size fractionated by methylmercury agarose gel electrophoresis, demonstrated that the 51,000 Mr protein specifically immunoprecipitated by the anti-opioid receptor antiidiotype antibodies was coded by a transcript which length was in the 6 to 8 kb range. Displacement binding studies of tritiated ligands (either bremazocine or delta or mu selective peptides) with type selective opioid ligands showed that only one type of opioid binding site was synthesized in vitro. Although the pharmacological profiles of ligands binding to NG108-15 cells were characteristic of the delta receptor type, the de novo synthesized opioid binding site had lost its delta selectivity and showed equal affinity for both the mu and delta but not for the kappa ligands. Similar to our finding using the immunoprecipitation system, size fractionation of the NG108-15 poly[A]+RNA demonstrated that the transcript coding for the "mu-delta" binding site had a length of 6,500 to 7,500 nucleotides. Topics: Animals; Benzomorphans; Binding, Competitive; Cell Line; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Hybridomas; Mice; Molecular Weight; Morphinans; Oligopeptides; Rats; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, mu; RNA, Messenger | 1990 |