morin and naringenin

morin has been researched along with naringenin* in 9 studies

Other Studies

9 other study(ies) available for morin and naringenin

ArticleYear
Naringenin and morin reduces insulin resistance and endometrial hyperplasia in the rat model of polycystic ovarian syndrome through enhancement of inflammation and autophagic apoptosis.
    Acta biochimica Polonica, 2022, Feb-10, Volume: 69, Issue:1

    Polycystic Ovary Syndrome (PCOS) is a gynecologic disorder with unsatisfactory treatment options. Hyperandrogenism and insulin resistance (IR) are two symptoms of PCOS. The majority of PCOS patients (approximately 50% to 70%) have IR and moderate diffuse inflammation of varying degrees. We investigated in-vitro and in-vivo effects of naringenin, morin and their combination on PCOS induced endometrial hyperplasia by interfering with the mTORC1 and mTORC2 signaling pathways. The vaginal smear test ensured the regular oestrous cycles in female rats. Serum cytokines (TNF-α and IL-6) were assessed using the ELISA test, followed by in-vivo and in-vitro determination of prominent gene expressions (mTORC1and C2, p62, LC3-II, and Caspase-3 involved in the inflammatory signaling mechanisms through RT-PCR, western bloting, or immunohistochemical analysis. In addition, the viability of naringenin or morin treated cells was determined using flow cytometry analysis. The abnormal oestrous cycle and vaginal keratosis indicated that PCOS was induced successfully. The recovery rate of the oestrous cycle with treatments was increased significantly (P<0.01) when compared to the PCOS model. Narigenin, morin, or a combination of the two drugs substantially decreased serum insulin, TNF-α, IL-6 levels with improved total anti-oxidant capacity and SOD levels (P<0.01). Treatments showed suppression of HEC-1-A cells proliferation with increased apoptosis (P<0.01) by the upregulation of Caspase-3 expression, followed by downregulation of mTORC, mTORC1, and p62 (P<0.01) expressions with improved LC3-II expressions (P<0.05) respectively. The histological findings showed a substantial increase in the thickness of granulose layers with improved corpora lutea and declined the number of cysts. Our findings noticed improved inflammatory and oxidative microenvironment of ovarian tissues in PCOS treated rats involving the autophagic and apoptotic mechanisms demonstrating synergistic in-vitro and in-vivo therapeutic effects of treatments on PCOS-induced endometrial hyperplasia.

    Topics: Animals; Antioxidants; Apoptosis; Autophagy; Cell Line, Tumor; Cytokines; Drug Therapy, Combination; Endometrial Hyperplasia; Female; Flavanones; Flavonoids; Humans; Inflammation; Insulin Resistance; Mechanistic Target of Rapamycin Complex 1; Mechanistic Target of Rapamycin Complex 2; Polycystic Ovary Syndrome; Rats; Signal Transduction

2022
Formation of plasmonic silver nanoparticles by flavonoid reduction: A comparative study and application for determination of these substances.
    Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 2015, Volume: 151

    Formation of plasmonic silver nanoparticles by flavonoid reduction was studied. Effects of the nature and the concentration of a flavonoid and a stabilizer, composition of the solution and the interaction time were revealed. It was found that quercetin, dihydroquercetin, rutin and morin produced an intense surface plasmon resonance band of silver nanoparticles at 415 nm which was linearly related to the concentration of a flavonoid, while chrysin, naringenin and naringin did not produce any remarkable changes. It was used for the spectrophotometric determination of the former four flavonoids with the detection limits of 0.03; 0.06; 0.09 and 0.1 μg mL(-1), respectively. The developed method was applied for the determination of flavonoids in biologically active food additives.

    Topics: Flavanones; Flavonoids; Metal Nanoparticles; Quercetin; Rutin; Silver; Spectrophotometry

2015
In vitro effects of myricetin, morin, apigenin, (+)-taxifolin, (+)-catechin, (-)-epicatechin, naringenin and naringin on cytochrome b5 reduction by purified NADH-cytochrome b5 reductase.
    Toxicology, 2013, Jun-07, Volume: 308

    The microsomal NADH-dependent electron transport system consisting of cytochrome b5 reductase and cytochrome b5 participates in a number of physiologically important processes including lipid metabolism as well as is involved in the metabolism of various drug and xenobiotics. In the present study, we assessed the inhibitory effects of eight dietary flavonoids representing five distinct chemical classes on cytochrome b5 reduction by purified cytochrome b5 reductase. From the flavonoids tested, myricetin was the most potent in inhibiting cytochrome b5 reduction with an IC50 value of 0.35μM. Myricetin inhibited b5 reductase noncompetitively with a Ki of 0.21μM with respect to cofactor NADH, and exhibited a non-linear relationship indicating non-Michaelis-Menten kinetic binding with respect to cytochrome b5. In contrast to the potent inhibitory activity of myricetin, (+)-taxifolin was found to be a weak inhibitor (IC50=9.8μM). The remaining flavonoids were inactive within the concentration range tested (1-50μM). Analysis of structure-activity data suggested that simultaneous presence of three OH groups in ring B is a primary structural determinant for a potent enzyme inhibition. Our results suggest that inhibition of the activity of this system by myricetin or myricetin containing diets may influence the metabolism of therapeutic drugs as well as detoxification of xenobiotics.

    Topics: Animals; Apigenin; Catechin; Cattle; Cytochrome-B(5) Reductase; Cytochromes b5; Flavanones; Flavonoids; Microsomes, Liver; Protein Binding; Quercetin; Rabbits

2013
Switching on fluorescence for selective visual recognition of naringenin and morin with a metal-organic coordination polymer of Zn(bix) [bix=1,4-bis(imidazol-1-ylmethyl)benzene].
    Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 2013, Feb-15, Volume: 103

    Flavonoids such as naringenin and morin are ubiquitous in a wide range of foods isolated from plants, and have diverse effects on plants even on human health. Here, we establish a selective visual method for recognition of aringenin and morin based on the "switched on" fluorescence induced by a metal-organic coordination polymer of Zn(bix) [bix=1,4-bis(imidazol-1-ylmethyl)benzene]. Owing to the coordination interaction of aringenin and morin with Zn(II) from the polymeric structure of Zn(bix), the conformational free rotation of naringenin and morin is restricted leading to relatively rigid structures. And as a consequence, the fluorescence is switched on. While luteolin and quercetin, holding a very similar structure with naringenin and morin, have no such fluorescence enhancement most likely owing to the 3'-hydroxy substitution in the B ring. Under 365 nm UV lamp light, we can visually recognize and discriminate naringenin and morin from them each other and luteolin as well as quercetin based on the colors of their emission. With this recognition system, the detection of naringenin and morin in human urine was made with satisfactory results.

    Topics: Antioxidants; Benzene Derivatives; Estrogen Antagonists; Flavanones; Flavonoids; Humans; Organometallic Compounds; Sensitivity and Specificity; Spectrometry, Fluorescence; Zinc

2013
Elevated carbon dioxide increases contents of flavonoids and phenolic compounds, and antioxidant activities in Malaysian young ginger (Zingiber officinale Roscoe.) varieties.
    Molecules (Basel, Switzerland), 2010, Nov-03, Volume: 15, Issue:11

    Zingiber officinale Roscoe. (Family Zingiberaceae) is well known in Asia. The plant is widely cultivated in village gardens in the tropics for its medicinal properties and as a marketable spice in Malaysia. Ginger varieties are rich in physiologically active phenolics and flavonoids with a range of pharmacological activities. Experiments were conducted to determine the feasibility of increasing levels of flavonoids (quercetin, rutin, catechin, epicatechin, kaempferol, naringenin, fisetin and morin) and phenolic acid (gallic acid, vanillic acid, ferulic acid, tannic acid, cinnamic acid and salicylic acid), and antioxidant activities in different parts of Malaysian young ginger varieties (Halia Bentong and Halia Bara) with CO(2) enrichment in a controlled environment system. Both varieties showed an increase in phenolic compounds and flavonoids in response to CO(2) enrichment from 400 to 800 µmol mol-1 CO(2). These increases were greater in rhizomes compared to leaves. High performance liquid chromatography (HPLC) results showed that quercetin and gallic acid were the most abundant flavonoid and phenolic acid in Malaysian young ginger varieties. Under elevated CO(2) conditions, kaempferol and fisetin were among the flavonoid compounds, and gallic acid and vanillic acid were among the phenolic compounds whose levels increased in both varieties. As CO(2) concentration was increased from 400 to 800 µmol mol-1, free radical scavenging power (DPPH) increased about 30% in Halia Bentong and 21.4% in Halia Bara; and the rhizomes exhibited more enhanced free radical scavenging power, with 44.9% in Halia Bentong and 46.2% in Halia Bara. Leaves of both varieties also displayed good levels of flavonoid compounds and antioxidant activities. These results indicate that the yield and pharmaceutical quality of Malaysian young ginger varieties can be enhanced by controlled environment production and CO(2) enrichment.

    Topics: Antioxidants; Carbon Dioxide; Catechin; Chromatography, High Pressure Liquid; Cinnamates; Coumaric Acids; Flavanones; Flavonoids; Flavonols; Free Radical Scavengers; Gallic Acid; Hydroxybenzoates; Kaempferols; Malaysia; Phenols; Quercetin; Rutin; Salicylic Acid; Tannins; Vanillic Acid; Zingiber officinale

2010
Structure and antioxidant activity of brominated flavonols and flavanones.
    Journal of mass spectrometry : JMS, 2009, Volume: 44, Issue:10

    Hypobromous acid (HOBr) produced by both eosinophil peroxidase (EPO) and myeloperoxidase (MPO) is a stronger oxidant than HOCl, and is also essential for optimal and efficient microbial killing. Considering the potential cytotoxic effect of HOBr, if it is formed outside the phagosome, it should be useful to scavenge it in order to protect the nearby tissues. In this study the ability of selected flavonoids to protect against HOBr mediated oxidation reactions was performed through a competitive reaction, and the resulting products identified by high performance liquid chromatography (HPLC) and electrospray ionization tandem mass spectrometry(ESI-MS/MS). Several structural features were found to be important to confer high antioxidant activity to flavonoids towards HOBr: the C2=C3 double bond and the 3-OH group in the C-ring, and the presence of both 5-OH and 7-OH groups in the A-ring. The MS results showed that flavonoids are dibrominated in the A-ring, suggesting that (except for fisetin) bromination occurs at C6 and C8 positions, through an electrophilic aromatic substitution reaction. The chemical modifications achieved by bromination of flavonoids have changed their biological properties, presenting their brominated derivatives higher antioxidant activity, as radical scavengers, and higher lipophilicity, than the parent flavonoids. Brominated flavonoids may then diffuse easily through membranes increasing the intracellular concentration of the compounds. These locally formed metabolites may also interact with signaling cascades involving cytokines and regulatory transcription factors, thus playing a role in inflammation and in the regulation of immune response.

    Topics: Bromates; Chromatography, High Pressure Liquid; Flavanones; Flavonoids; Flavonols; Free Radical Scavengers; Molecular Structure; Oxidants; Quercetin; Rutin; Spectrometry, Mass, Electrospray Ionization

2009
Inhibition effect of flavonoids on monocarboxylate transporter 1 (MCT1) in Caco-2 cells.
    The Journal of pharmacy and pharmacology, 2007, Volume: 59, Issue:11

    This study aimed to investigate the inhibition effect of flavonoids on monocarboxylate transporter 1 (MCT1) in Caco-2 cells. The cellular uptake of benzoic acid was examined in the presence and the absence of naringin, naringenin, morin, silybin and quercetin in Caco-2 cells. All the tested flavonoids except naringin significantly inhibited (P<0.05) the cellular uptake of [(14)C]-benzoic acid. Particularly, naringenin and silybin exhibited strong inhibition effects with IC50 values of 23.4 and 30.2 microM, respectively. Kinetic analysis indicated that the inhibition mode of naringenin and silybin on MCT1 activity was competitive with a Ki of 15-20 microM. The effect of flavonoids on the gene expression of MCT1 was also examined by using RT-PCR and western blot analysis. Results indicated that the expression level of MCT1 was not affected by the treatment with naringenin or silybin. The cellular accumulation of naringenin in Caco-2 cells was not changed in the presence of benzoic acid or L-lactic acid, implying that naringenin might not be a substrate of MCT1. In conclusion, some flavonoids appeared to be competitive inhibitors of MCT1, suggesting the potential for diet-drug interactions between flavonoids and MCT1 substrates.

    Topics: Benzoic Acid; Biological Transport; Blotting, Western; Caco-2 Cells; Dose-Response Relationship, Drug; Flavanones; Flavonoids; Food-Drug Interactions; Gene Expression Regulation; Humans; Inhibitory Concentration 50; Lactic Acid; Monocarboxylic Acid Transporters; Quercetin; Reverse Transcriptase Polymerase Chain Reaction; Silybin; Silymarin; Symporters

2007
Pro-oxidative properties of flavonoids in human lymphocytes.
    Bioscience, biotechnology, and biochemistry, 2003, Volume: 67, Issue:6

    The pro-oxidative properties of the four flavonoids, quercetin, morin, naringenin and hesperetin, in human lymphocyte system were investigated. Naringenin and hesperetin accelerated the oxidation of deoxyribose induced by Fe(3+)/H(2)O(2) in a concentration range of 0-200 microM, but quercetin and morin decreased it when the concentration was greater than 100 microM. The generation of hydrogen peroxide and the superoxide anion and the production of TBARS in lymphocytes were increased with increasing concentration of a flavonoid. Cell membrane protein thiols of the lymphocytes decreased when treated with the four flavonoids. Quercetin and hesperetin had no significant effect (p>0.05) on the activity of glutathione reductase, but morin and naringenin could inhibit the activity of the enzyme at a concentration of 200 microM, when compared to the control group. The glutathione S-transferase activity was slightly decreased by treatment with each of the four flavonoids only at a concentration of 200 microM. Therefore, the DNA damage in lymphocytes induced by the flavonoids in the model system might have been due to their stimulation of oxidative stress in the lymphocytes, which resulted in the decrease of cell membrane protein thiols, increase of lipid peroxidation in cell membrane and in the influence of the antioxidative enzyme activities.

    Topics: Cell Survival; Deoxyribose; DNA Damage; Flavanones; Flavonoids; Hesperidin; Humans; Hydrogen Peroxide; Lymphocytes; Membrane Proteins; Oxidants; Oxidation-Reduction; Quercetin; Superoxides

2003
Lipid peroxidation and DNA damage induced by morin and naringenin in isolated rat liver nuclei.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 1997, Volume: 35, Issue:5

    The pro-oxidant activities, as determined by lipid peroxidation and DNA strand breaks, of morin and naringenin, two polyphenolic flavonoids with molecular structures similar to quercetin, were investigated under aerobic conditions in a model system of isolated rat liver nuclei. Both flavonoids induced a concentration-dependent peroxidation of nuclear membrane lipids concurrent with DNA strand breaks. These reactions were enhanced by the metal ions iron or copper. Active oxygen scavengers catalase, superoxide dismutase and mannitol had no effect on the flavonoid-induced nuclear DNA damage in the presence of the metal ions; nuclear lipid peroxidation was partially inhibited only by mannitol. It appears that hydroxyl radicals are the initiators of the peroxidation of nuclear membrane lipids, producing peroxidation products such as peroxyl radicals that in turn may be responsible for the DNA strand breaks. Alternatively, the hydroxyl radicals produced close to the DNA backbone may induce direct site-specific strand breaks that are insensitive to the free radical scavengers. These results demonstrate the pro-oxidant activities of polyphenolic flavonoids, which are generally considered as antioxidants and anticarcinogens, and suggest their possible dual role in mutagenesis and carcinogenesis.

    Topics: Animals; Antioxidants; Cell Nucleus; Copper; DNA Damage; DNA Repair; Flavanones; Flavonoids; Free Radical Scavengers; Iron; Lipid Peroxidation; Liver; Male; Rats; Rats, Sprague-Dawley

1997
chemdatabank.com