monensin has been researched along with kavain* in 1 studies
1 other study(ies) available for monensin and kavain
Article | Year |
---|---|
(+/-)-kavain inhibits the veratridine- and KCl-induced increase in intracellular Ca2+ and glutamate-release of rat cerebrocortical synaptosomes.
The action of (+/-)-kavain on the veratridine, monensin and KCl-depolarization evoked increase in free cytosolic Ca2+ concentration ([Ca2+]i), and its influence on the release of endogenous glutamate from rat cerebrocortical synaptosomes were investigated. [Ca2+]i was fluorimetrically determined employing FURA as the Ca2+ sensitive fluorophore, and glutamate was detected by a continuous enzyme-linked fluorimetric assay. The incubation of synaptosomes in the presence of (+/-)-kavain up to a concentration of 500 mumol/l affected neither basal [Ca2+]i nor spontaneous release of glutamate, but dose-dependently reduced both veratridine-elevated [Ca2+]i (IC50 = 63.2 mumol/l) and glutamate-release (IC500 = 116.4 mumol/l). The inhibition of these parameters, attained with 500 mumol/l(+/-)-kavain, could be overcome by inducing an artificial Na+ influx, using monensin as a Na+ ionophore, An application of (+/-)-kavain after veratridine caused a decrease in veratridine-elevated [Ca2+]i, which was similar to the action of tetrodotoxin (TTX) with regard to time course, half-life of [Ca2+]i decline and the final steady state level of [Ca2+]i. Concomitantly, veratridine-induced glutamate-release was blocked. The results indicate that specific inhibition of voltage-dependent Na+ channels is a primary target of (+/-)-kavain, thus preventing a [Na+]i provoked increase in [Ca2+]i and glutamate-release. However, pathways related to the elevation of [Ca2+]i by [Na+]i itself, and the processes involved in normalization of elevated [Ca2+]i and glutamate-release downstream to enhanced [Ca2+]i, seems to be unaffected by (+/-)-kavain. Using KCl-depolarized synaptosomes, 400 mumol/l (+/-)-kavain reduced, in analogy to Aga-GI toxin, KCl-evoked [Ca2+]i and diminished the part of glutamate-exocytosis which is related to external Ca2+ to about 75% of control. At a concentration of 150 mumol/l, which is above the IC50 value necessary to block voltage-dependent Na+ channels, (+/-)-kavain affected neither basal nor the KCl-induced increase in [Ca2+]i. These results might suggest that (+/-)-kavain at concentrations sufficient to block Na+ channels completely. moderately inhibits the non-inactivating Ca2+ channels located on mammalian presynaptic nerve endings. Topics: Animals; Anti-Anxiety Agents; Calcium; Cerebral Cortex; Fura-2; Glutamic Acid; Ionophores; Male; Monensin; Potassium Chloride; Pyrones; Rats; Rats, Wistar; Synaptosomes; Veratridine | 1996 |