monensin has been researched along with herbimycin* in 1 studies
1 other study(ies) available for monensin and herbimycin
Article | Year |
---|---|
Protein tyrosine phosphorylation in signalling pathways leading to the activation of gelatinase A: activation of gelatinase A by treatment with the protein tyrosine phosphatase inhibitor sodium orthovanadate.
Fibroblasts in monolayer culture secrete gelatinase A (MMP2; 72 kDa type IV collagenase) only in its proenzyme form. Unlike other secreted matrix metalloproteinases, progelatinase A is refractory to activation by serine proteinases. Disparate agents, including monensin, cytochalasin D, and concanavalin A, have been found to mediate the activation of gelatinase A zymogen secreted by fibroblast monolayers. Our finding that monensin-mediated activation can be reversed by the protein tyrosine kinase inhibitor genistein (Li et al., Experimental Cell Research 232 (1997) 332) prompted us to investigate the effect of the specific inhibitor of protein tyrosine phosphatases, sodium orthovanadate, on progelatinase A activation. Treatment of fibroblast monolayers with orthovanadate also results in the secretion of activated gelatinase A. This activation is dose- and time-dependent, requires protein synthesis, and is associated with cell membranes. Vanadate-mediated activation does not occur in the presence of herbimycin A, a protein tyrosine kinase inhibitor. As with progelatinase activation mediated by monensin, concanavalin A, and cytochalasin D, orthovanadate treatment results in increased synthesis of the membrane proteinase MT1-MMP, that can catalyze the activation of progelatinase A. Protein tyrosine kinase inhibitors are able to prevent the increase of MT1-MMP mRNA, as shown by Northern blot and RT-PCR. In addition, orthovanadate potentiates the effects of monensin and concanavalin A. While treatment with monensin or concanavalin A result only in an increase of the putative activator MT1-MMP, orthovanadate also reduces the production of the specific inhibitor TIMP-2. These experiments implicate protein tyrosine phosphorylation in the signal transduction pathways which lead to the activation of progelatinase A. Topics: Base Sequence; Benzoquinones; Cells, Cultured; DNA Primers; Enzyme Activation; Enzyme Inhibitors; Fibroblasts; Gelatinases; Humans; Lactams, Macrocyclic; Matrix Metalloproteinase 2; Matrix Metalloproteinases, Membrane-Associated; Metalloendopeptidases; Monensin; Phosphorylation; Protein Tyrosine Phosphatases; Quinones; Reverse Transcriptase Polymerase Chain Reaction; Rifabutin; RNA, Messenger; Signal Transduction; Tissue Inhibitor of Metalloproteinase-2; Tyrosine; Vanadates | 1998 |