monensin and chelerythrine

monensin has been researched along with chelerythrine* in 2 studies

Other Studies

2 other study(ies) available for monensin and chelerythrine

ArticleYear
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
    Bioorganic & medicinal chemistry, 2012, Nov-15, Volume: 20, Issue:22

    The presented project started by screening a library consisting of natural and natural based compounds for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity. Active compounds were chemically clustered into groups and further tested on the human cholinesterases isoforms. The aim of the presented study was to identify compounds that could be used as leads to target two key mechanisms associated with the AD's pathogenesis simultaneously: cholinergic depletion and beta amyloid (Aβ) aggregation. Berberin, palmatine and chelerythrine, chemically clustered in the so-called isoquinoline group, showed promising cholinesterase inhibitory activity and were therefore further investigated. Moreover, the compounds demonstrated moderate to good inhibition of Aβ aggregation as well as the ability to disaggregate already preformed Aβ aggregates in an experimental set-up using HFIP as promotor of Aβ aggregates. Analysis of the kinetic mechanism of the AChE inhibition revealed chelerythrine as a mixed inhibitor. Using molecular docking studies, it was further proven that chelerythrine binds on both the catalytic site and the peripheral anionic site (PAS) of the AChE. In view of this, we went on to investigate its effect on inhibiting Aβ aggregation stimulated by AChE. Chelerythrine showed inhibition of fibril formation in the same range as propidium iodide. This approach enabled for the first time to identify a cholinesterase inhibitor of natural origin-chelerythrine-acting on AChE and BChE with a dual ability to inhibit Aβ aggregation as well as to disaggregate preformed Aβ aggregates. This compound could be an excellent starting point paving the way to develop more successful anti-AD drugs.

    Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship

2012
Localization of intracellular compartments that exchange Na,K-ATPase molecules with the plasma membrane in a hormone-dependent manner.
    British journal of pharmacology, 2007, Volume: 151, Issue:7

    Dopamine is a major regulator of sodium reabsorption in proximal tubule epithelia. By binding to D1-receptors, dopamine induces endocytosis of plasma membrane Na,K-ATPase, resulting in a reduced capacity of the cells to transport sodium, thus contributing to natriuresis. We have previously demonstrated several aspects of the molecular mechanism by which dopamine induces Na,K-ATPase endocytosis; however, the location of intracellular compartments containing Na,K-ATPase molecules has not been identified.. In this study, we used different approaches to determine the localization of Na,K-ATPase-containing intracellular compartments. By expression of fluorescent-tagged Na,K-ATPase molecules in opossum kidney cells, a cell culture model of proximal tubule epithelia, we used fluorescence microscopy to determine cellular distribution of the fluorescent molecules and the effects of dopamine on this distribution. By labelling cell surface Na,K-ATPase molecules from the cell exterior with either biotin or an epitope-tagged antibody, we determined the localization of the tagged Na,K-ATPase molecules after endocytosis induced by dopamine.. In cells expressing fluorescent-tagged Na,K-ATPase molecules, there were intracellular compartments containing Na,K-ATPase molecules. These compartments were in very close proximity to the plasma membrane. Upon treatment of the cells with dopamine, the fluorescence labelling of these compartments was increased. The labelling of these compartments was also observed when the endocytosis of biotin- or antibody-tagged plasma membrane Na,K-ATPase molecules was induced by dopamine.. The intracellular compartments containing Na,K-ATPase molecules are located just underneath the plasma membrane.

    Topics: Alkaloids; Androstadienes; Animals; Benzophenanthridines; Cell Membrane; Cell Nucleus; Cells, Cultured; Dopamine; Endocytosis; Green Fluorescent Proteins; Intracellular Space; Kidney Tubules, Proximal; Luminescent Proteins; Microscopy, Fluorescence; Monensin; Opossums; Ouabain; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Protein Kinase C; Protein Transport; Rats; Recombinant Fusion Proteins; Sodium-Potassium-Exchanging ATPase; Transfection; Wortmannin

2007