monensin has been researched along with artemisinin* in 4 studies
4 other study(ies) available for monensin and artemisinin
Article | Year |
---|---|
Evidence for Regulation of Hemoglobin Metabolism and Intracellular Ionic Flux by the Plasmodium falciparum Chloroquine Resistance Transporter.
Plasmodium falciparum multidrug resistance constitutes a major obstacle to the global malaria elimination campaign. Specific mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) mediate resistance to the 4-aminoquinoline drug chloroquine and impact parasite susceptibility to several partner agents used in current artemisinin-based combination therapies, including amodiaquine. By examining gene-edited parasites, we report that the ability of the wide-spread Dd2 PfCRT isoform to mediate chloroquine and amodiaquine resistance is substantially reduced by the addition of the PfCRT L272F mutation, which arose under blasticidin selection. We also provide evidence that L272F confers a significant fitness cost to asexual blood stage parasites. Studies with amino acid-restricted media identify this mutant as a methionine auxotroph. Metabolomic analysis also reveals an accumulation of short, hemoglobin-derived peptides in the Dd2 + L272F and Dd2 isoforms, compared with parasites expressing wild-type PfCRT. Physiologic studies with the ionophores monensin and nigericin support an impact of PfCRT isoforms on Ca Topics: Amodiaquine; Antimalarials; Artemisinins; Calcium; Cells, Cultured; Chloroquine; Drug Resistance, Multiple; Erythrocytes; Gene Expression; Hemoglobins; Host-Parasite Interactions; Humans; Ion Transport; Ionophores; Membrane Transport Proteins; Monensin; Mutation; Nigericin; Plasmodium falciparum; Protozoan Proteins; Pyrrolidinones | 2018 |
Stearylamine Liposomal Delivery of Monensin in Combination with Free Artemisinin Eliminates Blood Stages of Plasmodium falciparum in Culture and P. berghei Infection in Murine Malaria.
The global emergence of drug resistance in malaria is impeding the therapeutic efficacy of existing antimalarial drugs. Therefore, there is a critical need to develop an efficient drug delivery system to circumvent drug resistance. The anticoccidial drug monensin, a carboxylic ionophore, has been shown to have antimalarial properties. Here, we developed a liposome-based drug delivery of monensin and evaluated its antimalarial activity in lipid formulations of soya phosphatidylcholine (SPC) cholesterol (Chol) containing either stearylamine (SA) or phosphatidic acid (PA) and different densities of distearoyl phosphatidylethanolamine-methoxy-polyethylene glycol 2000 (DSPE-mPEG-2000). These formulations were found to be more effective than a comparable dose of free monensin in Plasmodium falciparum (3D7) cultures and established mice models of Plasmodium berghei strains NK65 and ANKA. Parasite killing was determined by a radiolabeled [(3)H]hypoxanthine incorporation assay (in vitro) and microscopic counting of Giemsa-stained infected erythrocytes (in vivo). The enhancement of antimalarial activity was dependent on the liposomal lipid composition and preferential uptake by infected red blood cells (RBCs). The antiplasmodial activity of monensin in SA liposome (50% inhibitory concentration [IC50], 0.74 nM) and SPC:Chol-liposome with 5 mol% DSPE-mPEG 2000 (IC50, 0.39 nM) was superior to that of free monensin (IC50, 3.17 nM), without causing hemolysis of erythrocytes. Liposomes exhibited a spherical shape, with sizes ranging from 90 to 120 nm, as measured by dynamic light scattering and high-resolution electron microscopy. Monensin in long-circulating liposomes of stearylamine with 5 mol% DSPE-mPEG 2000 in combination with free artemisinin resulted in enhanced killing of parasites, prevented parasite recrudescence, and improved survival. This is the first report to demonstrate that monensin in PEGylated stearylamine (SA) liposome has therapeutic potential against malaria infections. Topics: Amines; Animals; Antimalarials; Artemisinins; Blood; Drug Delivery Systems; Drug Therapy, Combination; Female; Liposomes; Malaria; Mice; Monensin; Plasmodium berghei; Plasmodium falciparum; Tissue Distribution | 2015 |
Biochemistry. Directing biosynthesis.
Topics: Alkyl and Aryl Transferases; Artemisinins; Cyclization; Echinomycin; Escherichia coli; Genetic Engineering; Hemiterpenes; Monensin; Organophosphorus Compounds; Peptide Biosynthesis, Nucleic Acid-Independent; Polyketide Synthases; Saccharomyces cerevisiae; Sesquiterpenes; Streptomyces | 2006 |
Antimalarial quinolines and artemisinin inhibit endocytosis in Plasmodium falciparum.
Endocytosis is a fundamental process of eukaryotic cells and fulfills numerous functions, most notably, that of macromolecular nutrient uptake. Malaria parasites invade red blood cells and during their intracellular development endocytose large amounts of host cytoplasm for digestion in a specialized lysosomal compartment, the food vacuole. In the present study we have examined the effects of artemisinin and the quinoline drugs chloroquine and mefloquine on endocytosis in Plasmodium falciparum. By using novel assays we found that mefloquine and artemisinin inhibit endocytosis of macromolecular tracers by up to 85%, while the latter drug also leads to an accumulation of undigested hemoglobin in the parasite. During 5-h incubations, chloroquine inhibited hemoglobin digestion but had no other significant effect on the endocytic pathway of the parasite, as assessed by electron microscopy, the immunofluorescence localization of hemoglobin, and the distribution of fluorescent and biotinylated dextran tracers. By contrast, when chloroquine was added to late ring stage parasites, followed by a 12-h incubation, macromolecule endocytosis was inhibited by more than 40%. Moreover, there is an accumulation of transport vesicles in the parasite cytosol, possibly due to a disruption in vacuole-vesicle fusion. This fusion block is not observed with mefloquine, artemisinin, quinine, or primaquine but is mimicked by the vacuole alkalinizing agents ammonium chloride and monensin. These results are discussed in the light of present theories regarding the mechanisms of action of the antimalarials and highlight the potential use of drugs in manipulating and studying the endocytic pathway of malaria parasites. Topics: Ammonium Chloride; Animals; Antimalarials; Artemisinins; Biotin; Blotting, Western; Chloroquine; Dextrans; Endocytosis; Fluorescein-5-isothiocyanate; Fluorescent Antibody Technique; Fluorescent Dyes; Hemoglobins; Mefloquine; Microscopy, Electron; Microscopy, Fluorescence; Monensin; Plasmodium falciparum; Quinolones; Sesquiterpenes; Transport Vesicles; Vacuoles | 2004 |