molybdenum-carbide and formic-acid

molybdenum-carbide has been researched along with formic-acid* in 1 studies

Other Studies

1 other study(ies) available for molybdenum-carbide and formic-acid

ArticleYear
Co-processing CH4 and oxygenates on Mo/H-ZSM-5: 2. CH4-CO2 and CH4-HCOOH mixtures.
    Physical chemistry chemical physics : PCCP, 2013, Aug-07, Volume: 15, Issue:29

    Co-processing of formic acid or carbon dioxide with CH4 (FA/CH4 = 0.01-0.03 and CO2/CH4 = 0.01-0.03) on Mo/H-ZSM-5 catalysts at 950 K with the prospect of kinetically coupling dehydrogenation and deoxygenation cycles results instead in a two-zone, staged bed reactor configuration consisting of upstream oxygenate/CH4 reforming and downstream CH4 dehydroaromatization. The addition of an oxygenate co-feed (oxygenate/CH4 = 0.01-0.03) causes oxidation of the active molybdenum carbide catalyst while producing CO and H2 until completely converted. Forward rates of C6H6 synthesis are unaffected by the introduction of an oxygenate co-feed after rigorously accounting for the thermodynamic reversibility caused by the H2 produced in oxygenate reforming reactions and the fraction of the active catalyst deemed unavailable for CH4 DHA. All effects of co-processing oxygenates with CH4 can be construed in terms of an approach to equilibrium.

    Topics: Benzene; Carbon Dioxide; Carbon Monoxide; Catalysis; Formates; Hydrogen; Kinetics; Methane; Molybdenum; Oxidation-Reduction; Thermodynamics

2013